For all two-register opcodes, the first (left-most) register is operand-1 and the destination register for the result of the operation, while the second (right-most) register is operand-2 or the address/index register. Exceptions to this rule are the “range” opcodes, such as CLR, PUR, POR, where the first register number specifies the beginning of the address range, while the second register number specifies the end of the address range (inclusive).

Register numbers can be specified with a leading ‘r’, ‘b’, ‘w’, or ‘d’ (the size indicators). There are 256 bytes of CPU registers. When the register is specified with a leading ‘b’, ‘w’, or ‘d’, then the register number specified should be between 0 and 255 for ‘b’, 0 and 254 for ‘w’, or 0 and 252 for ‘d’. When the register number is specified with an ‘r’, then the number is a “pre-sized register” number. The 256 bytes of CPU registers are pre-configured into DWORD, WORD, and BYTE registers to ease the programming task. The registers are pre-sized thusly:

CPU reg# range

Pre-sized reg# range
Pre-sized register size

 0 – 127

 r0 – r31

 DWORD (4 bytes)

 128 – 223

 r32 – r79

 WORD (2 bytes)

 224 – 255

 r80 – r111

 BYTE (1 bytes)

All register numbers in this document will be prefaced by a size indicator (‘r’, ‘b’, ‘w’, or ‘d’). However, the pre-sized register numbers are ONLY used by the assembler (KASM). ALL ‘machine code’ uses ONLY CPU register numbers from 0 to 255, as the size of the operation is implied by the opcode. In other words, the assembler translates all pre-sized register references into actual CPU register numbers and the appropriate opcode for the size of the operation. The FIRST register (left-most, data register) after an opcode determines the size of the operation. For example, “LDR r6,r80” will load FOUR byte-registers (R80, R81, R82, R83) into the DWORD register R6. This operation could alternately by specified in a number of different ways with the first register being specified as either “r6” or “d24” and the second register being specified as ‘r80’, ‘b224’, ‘w224’, or ‘d224’ (“LDR d24,r80” or “LDR r6,b224” etc). The ‘b’, ‘w’, or ‘d’ specification on the second register has no bearing on the size of the operation or how many registers are actually accessed there, as that is controlled by the size of the first register.

Registers r0-r5 are hard-coded to their purpose by the interpreter. The other registers are general purpose and may be used however you wish. The hard-coded registers have these uses:

R0
code memory handle, 32 bits

R1
memory block handle 1, 32 bits

R2
memory block handle 2, 32 bits

R3
code pointer, offset in memory block [R0], 32 bits

R4
stack frame base, offset in memory block [R0], 32 bits

R5
top of stack pointer, offset in memory block [R0], 32 bits

The KCPU has three status flags: MSbit, E, LSbit. They’re set by these opcodes:

SHL SHR ROL ROR SUB AND XOR CMP INC DEC NOT NEG TST B2I

as well as the “RET 0” and “RET 1” opcodes (but NOT the “RET” opcode). All other opcodes have NO effect upon the KCPU flags (except REF).

The KCPU has 1 “control” flag, the “signed math” flag or SM. SM is cleared by the USM instruction (unsigned math) and set by the SM instruction. The state of the SM flag is saved and restored by the SAF and REF instructions. When SM is set, the KCPU does signed math operations when executing these opcodes:

SHR DIV MOD SUB CMP

The KCPU always uses signed math when executing the NEG instruction. Some of the above operations (SUB CMP) may have the same result whether the SM is set or not, but are included for completeness.

When KE “event entry points” are called (such as OnKeyDown, etc), R32 contains the command (which is just the offset into the vector table), R15, R14, and R13 contain arg1, arg2, and arg3 respectively. When the event code HALTs, it should first place into R23 the value that it wishes to be returned for the event.

When using a register as an index (ie, LD0 r16,r12,=Table), the index (address) register is always treated as an unsigned value. The index register is almost always treated as a DWORD value, regardless of the pre-sized register number specified. For example, LD0 r16,r80,=Table will actually use r80-r83 as a DWORD offset that gets added to the value of Table to arrive at the actual target address.

Anywhere that an EQU’d value can be used as an “immediate” value, you can also use sizeof(arg) where arg is the name of a structure definition or the name of a structure variable. If the structure variable is an array of structures, then the sizeof() returns the size of the entire array (in bytes). If it’s a single structure or a structure definition, then it returns the size (in bytes) of the single structure.

The IJMP opcode uses the specified REGISTER value as the index into a table whose address is specified by the DWORD following the IJMP opcode. The format of that table is thus:

DWORD
n = number_of_indexed_entries

DWORD
entry_0

DWORD entry_1

DWORD entry_2

...

DWORD entry_n-1

DWORD
default_entry

The DWORD entries in the table are addresses (in memblk[R0]) of the routines to jump to. If the value in the specified register is >= n, then the jump goes to the default_entry (ie, entry “n”).

The KJMP opcode is very similar to the IJMP opcode, except that it contains two DWORDs per entry, the first being the KEY value, the second being the jump address. The table has this form:

DWORD n = number_of_keyed_entries

DWORD key_entry_0

DWORD jmp_entry_0

DWORD key_entry_1

DWORD jmp_entry_1

...

DWORD key_entry_n-1

DWORD jmp_entry_n-1

DWORD
jmp_default

The table of opcodes on the following page is organized in numerical sequence. All opcodes are a WORD. The number given in the following table is the value of the upper (most-significant) byte of the word (the KASM/KINT system is “little-endian”). The lower half of the opcode usually contains the first register number. For two-register opcodes, the second register number is contained in a second word immediately following the first opcode word. If an address or immediate value is needed, then it follows after that as either a WORD or a DWORD, depending upon the size of the operation and/or the addressing mode. A minor exception to all of this are the FExx opcodes, which use the lower byte to differeniate the actual operations (since they don’t use registers, and opcode space became short). Another exception to this are the conditional jump instructions, which use the lower byte as the + or – offset by which to jump. In this table, the registers are specified by ‘r’, ‘b’, ‘w’, or ‘d’ to indicate the sizes of the register operands.

The FE10 through FE21 opcodes are “indirect register pointer” opcodes. This means that you can load any BYTE register (ie, any CPU register 6-255) with a value from 0-255, and then use that register as the second register operand of these opcodes (LDC, LDCP, LDCM, STC, STCP, and STCM) to access other CPU registers. For example:

ldi
r111,=REG_32

; point r111 at r32 (see UI.KH for REG_ equates)

ldi r110,=0

@:

stcp r110,r111

; store r110 (0) into the reg pointed to by r111 (r32)

; and increment r111 afterwards

cmp r111,=REG_40

jne
@b

; loop til r111=REG_40

This code will (in a VERY inefficient fashion () clear registers r32-r39. The size of the operation, as usual, is determined by the size of the first register. In these cases, since the entire opcode is taken up specifying the operation, the second WORD (the WORD following the opcode) contains both register numbers. The first register number is in the upper half of the following WORD and the second register number is in the lower half.

Note that ONLY one byte of register space is used (and incremented or decremented, if specified) regardless of the “size” of the register. For example:

ldi r6,=0xFFFFFF80

ldi r111,=0

stcp r111,r6

This will cause a 0 to be stored into CPU register 0x80 (R32), and then increment the least significant byte of R6, leaving R6 with a value of 0xFFFFFF81. You could similarly do:

ldi r6,=0xFFFF80FF

ldi r111,=0

stcp r111,b25

This will cause a 0 to be stored ito CPU register 0x80 (R32), and then increment the 2nd least significant byte of R6, leaving R6 with a value of 0xFFFF81FF. If the “index” register rolls over from 0xFF to 0x00 (using STCP or LDCP) or from 0x00 to 0xFF (using STCM or LDCM), there is still no effect on the surrounding registers, ONLY that one byte register is modified.

2-reg register ops

00 unused

01 unused

02 unused

03 SHL
b,b

04 SHL
w,b

05 SHL
d,b

06 SHR
b,b

07 SHR
w,b

08 SHR
d,b

09 ROL
b,b

0A ROL
w,b

0B ROL
d,b

0C ROR
b,b

0D ROR
w,b

0E ROR
d,b

0F ADD
b,b

10 ADD
w,w

11 ADD
d,d

12 SUB
b,b

13 SUB
w,w

14 SUB
d,d

15 MUL
b,b

16 MUL
w,w

17 MUL
d,d

18 DIV
b,b

19 DIV
w,w

1A DIV
d,d

1B MOD
b,b

1C MOD
w,w

1D MOD
d,d

1E OR

b,b

1F OR

w,w

20 OR

d,d

21 AND
b,b

22 AND
w,w

23 AND
d,d

24 XOR
b,b

25 XOR
w,w

26 XOR
d,d

27 CMP
b,b

28 CMP
w,w

29 CMP
d,d

2A TST
b,b

2B TST
w,w

2C TST
d,d

2D XCH
b,b

2E XCH
w,w

2F XCH
d,d

30 LDR
b,b

31 LDR
w,w

32 LDR
d,d

33 LDE
d,b

34 LDE
d,w

35 LDE
w,b

36 ABIT
w,b

37 ABIT
b,b

2-reg reg-direct ops (2nd addr reg is always 4-bytes)

38 LD0
b,d

39 LD0
w,d

3A LD0
d,d

3B LD1
b,d

3C LD1
w,d

3D LD1
d,d

3E LD2
b,d

3F LD2
w,d

40 LD2
d,d

41 LDS
b,d

42 LDS
w,d

43 LDS
d,d

44 ST0
b,d

45 ST0
w,d

46 ST0
d,d

47 ST1
b,d

48 ST1
w,d

49 ST1
d,d

4A ST2
b,d

4B ST2
w,d

4C ST2
d,d

4D STS
b,d

4E STS
w,d

4F STS
d,d

50 PU0
b,d

51 PU0
w,d

52 PU0
d,d

53 PO0
b,d

54 PO0
w,d

55 PO0
d,d

56 unused

57 unused

2-reg register-indexed-direct ops (2nd address register is always 4-bytes)

58 LD0
b,d,=dval

59 LD0
w,d,=dval

5A LD0
d,d,=dval

5B LD1
b,d,=dval

5C LD1
w,d,=dval

5D LD1
d,d,=dval

5E LD2
b,d,=dval

5F LD2
w,d,=dval

60 LD2
d,d,=dval

61 LDS
b,d,=dval

62 LDS
w,d,=dval

63 LDS
d,d,=dval

64 ST0
b,d,=dval

65 ST0
w,d,=dval

66 ST0
d,d,=dval

67 ST1
b,d,=dval

68 ST1
w,d,=dval

69 ST1
d,d,=dval

6A ST2
b,d,=dval

6B ST2
w,d,=dval

6C ST2
d,d,=dval

6D STS
b,d,=dval

6E STS
w,d,=dval

6F STS
d,d,=dval

70 PU0
b,d,=dval

71 PU0
w,d,=dval

72 PU0
d,d,=dval

73 PO0
b,d,=dval

74 PO0
w,d,=dval

75 PO0
d,d,=dval

76 LSA
d,=dval

77 B2I r,r

2-reg range ops (always byte range and inclusive)
78 CLR
b,b

79 PUR
b,b

7A POR
b,b

7B unused

7C unused

1-reg ops
7D SAF
b

7E REF
b

7F RET
b,=0

80 RET
w,=0

81 RET
d,=0

82 RET
b,=1

83 RET
w,=1

84 RET
d,=1

85 INC
b

86 INC
w

87 INC
d

88 DEC
b

89 DEC
w

8A DEC
d

8B NOT
b

8C NOT
w

8D NOT
d

8E NEG
b

8F NEG
w

90 NEG
d

91 PUSH
b

92 PUSH
w

93 PUSH
d

94 POP
b

95 POP
w

96 POP
d

97 unused

1-reg imm-direct ops (imm-value is always dword)
98 LD0
b,=dval

99 LD0
w,=dval

9A LD0
d,=dval

9B LD1
b,=dval

9C LD1
w,=dval

9D LD1
d,=dval

9E LD2
b,=dval

9F LD2
w,=dval

A0 LD2
d,=dval

A1 LDS
b,=dval

A2 LDS
w,=dval

A3 LDS
d,=dval

A4 ST0
b,=dval

A5 ST0
w,=dval

A6 ST0
d,=dval

A7 ST1
b,=dval

A8 ST1
w,=dval

A9 ST1
d,=dval

AA ST2
b,=dval

AB ST2
w,=dval

AC ST2
d,=dval

AD STS
b,=dval

AE STS
w,=dval

AF STS
d,=dval

B0 IJMP
b,=dval

B1 IJMP
w,=dval

B2 IJMP
d,=dval

B3 KJMP
b,=dval

B4 KJMP
w,=dval

B5 KJMP
d,=dval

B6 JSR
d,=dval

B7 JSI
d,=dval

B8 unused

B9 unused

1-reg imm-val ops
BA LDI
b,=wval

BB LDI
w,=wval

BC LDI
d,=dval

BD SHL
b,=wval

BE SHL
w,=wval

BF SHL
d,=wval

C0 SHR
b,=wval

C1 SHR
w,=wval

C2 SHR
d,=wval

C3 ROL
b,=wval

C4 ROL
w,=wval

C5 ROL
d,=wval

C6 ROR
b,=wval

C7 ROR
w,=wval

C8 ROR
d,=wval

C9 ADD
b,=wval

CA ADD
w,=wval

CB ADD
d,=dval

CC SUB
b,=wval

CD SUB
w,=wval

CE SUB
d,=dval

CF MUL
b,=wval

D0 MUL
w,=wval

D1 MUL
d,=dval

D2 DIV
b,=wval

D3 DIV
w,=wval

D4 DIV
d,=dval

D5 MOD
b,=wval

D6 MOD
w,=wval

D7 MOD
d,=dval

D8 OR

b,=wval

D9 OR

w,=wval

DA OR

d,=dval

DB AND
b,=wval

DC AND
w,=wval

DD AND
d,=dval

DE XOR
b,=wval

DF XOR
w,=wval

E0 XOR
d,=dval

E1 CMP
b,=wval

E2 CMP
w,=wval

E3 CMP
d,=dval

E4 TST
b,=wval

E5 TST
w,=wval

E6 TST
d,=dval

E7 JMP
=dval

Conditional jumps (offset embedded in opcode word)

E8 JE

+offset

E9 JE

-offset

EA JNE
+offset

EB JNE
-offset

EC JL

+offset

ED JL

-offset

EE JLE
+offset

EF JLE
-offset

F0 JG

+offset

F1 JG

-offset

F2 JGE
+offset

F3 JGE
-offset

F4 JEV
+offset

F5 JEV
-offset

F6 JOD
+offset

F7 JOD
-offset

F8 JMP
+offset

F9 JMP
-offset

No-register ops

FA SysFunc

FB JSR
=dval

FC JSI
=dval

FD RET

FE00 BRK

FE01 NOP

FE02 TERM

FE03 HALT

FE04 AFR

FE05 DRF

FE06 USM

FE07 SM

FE10 LDCM b,b

FE11 LDCM w,b

FE12 LDCM d,b

FE13 LDC b,b

FE14 LDC w,b

FE15 LDC d,b

FE16 LDCP b,b

FE17 LDCP w,b

FE18 LDCP d,b

FE19 STCM b,b

FE1A STCM w,b

FE1B STCM d,b

FE1C STC b,b

FE1D STC w,b

FE1E STC d,b

FE1F STCP b,b

FE20 STCP w,b

FE21 STCP d,b

FF unused

Primary memory block layout:

Example of stack manipulation using

the AFR and DFR opcodes, generated

by the @FRAME_ARGS/@FRAME_VARS

instructions.
SysOpen
Inputs:

R15 = address of filename

R95 = memblk (0=R0 1=R1 2=R2)

R94 =

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

4 if MUSIC folder

5 if SOUNDS folder

R39 = open flags, consistent with ANSI C:

O_RDBIN
0x8000
read only, binary

O_RDTEXT
0x4000
read only, text

O_WRBIN
0x8002
read/write, binary

O_WRTEXT
0x4002
read/write, text

O_WRBINEND 0x800A
read/write, binary, append

O_WRTEXTEND 0x400A
read/write, text, append

O_WRBINNEW 0x8300
read/write, binary, create or truncate

O_WRTEXTNEW
0x4300
read/write, text, create or truncate

Outputs:

R15 = file handle if successful, -1 if failed

SysEOF
Inputs:

R15 = file handle

Outputs:

R12 = 1 if at EOF, 0 if not at EOF, -1 if error

SysRead
Inputs:

R15 = file handle

R14 = buffer offset

R13 = max number of bytes to read

R95 = memblk (0=R0 1=R1 2=R2)

Outputs:

R12 = number of bytes read. (-1 if error)

SysWrite
Inputs:

R15 = file handle

R14 = buffer offset in memblk specified by R95

R13 = number of bytes to write

R95 = memblk (0=R0 1=R1 2=R2)

Outputs:

R12 = number of bytes written. (-1 if error)

SysSeek
Inputs:

R15 = file handle

R14 = offset to move the file pointer to

R95 = origin:

SEEK_SET
0

SEEK_CUR
1

SEEK_END
2

Outputs:

R12 = offset in bytes of the new position (-1 if error)

SysDelete
Inputs:

R15 = address of filename

R95 = memblk (0=R0 1=R1 2=R2)

SysClose
Inputs:

R15 = file handle to close

SysFindFirst
Inputs:

R15 = offset in memblock[R95] of filespec to search for

R95 = memblk (0=R0 1=R1 2=R2) for R15

R14 = offset in memblock[R94] of found filename buffer (min. of 260 bytes)

R94 = memblk (0=R0 1=R1 2=R2) for R14

R45 = folder (see SysOpen)

Outputs:

R15 = "findfirst/next" handle of first file found, or -1 if none found or error and found file name in buffer [R94]:R14

R95 = file attributes:

0x00 = _A_NORMAL

0x10 = _A_SUBDIR

SysFindNext
Inputs:

R15 = "find first/next" handle returned by previous FINDFIRST

R14 = offset in memblock[R94] of found-filename buffer (min. of 260 bytes)

R94 = memblk (0=R0 1=R1 2=R2) for R14

Outputs:

R15 = "findfirst/next" handle of file found, or -1 if none found or error and found file name in buffer [R94]:R14

R95 = file attributes:

0x00 = _A_NORMAL

0x10 = _A_SUBDIR

SysFindClose
Inputs:

R15 = "find first/next" handle returned by previous FINDFIRST

SysMakeShareCopy
Inputs:

R95 = command (0=get size & 1st name, non-0=copy next file)

R15 = R0 buffer address for next filename

R13 = R0 address of destination path

Outputs:

R14 = -1 if error, or total size of files to be copied if cmd==0, else 0. When no more files to be copied, buffer R15 gets a NUL character instead of a filename.

SysFileSize
Inputs:

R15 = address of filename in memblk R95

R95 = memblk (0=R0 1=R1 2=R2)

R94 = folder (see SysOpen)

Outputs:

R13 = size of file (-1 if error)

SysAllocMem
Inputs:

R15 = size of memory block to allocate

Outputs:

R15 = "handle" of memory block allocated (non-zero for valid memory allocation) this "handle" must be placed in R1 or R2 to access the memory (using LD1/LD2 type instructions). It is NULL if the allocation failed.

SysFreeMem
Inputs:

R15 = “handle” of memory block to free

SysTimeReg
Outputs:

R39 = year (ie, 2001)

R38 = month (0-11, Jan=0, Feb=1, Mar=2, etc)

R37 = day (1-31)

R36 = hour (0-23)

R35 = minute (0-59)

R34 = second (0-59)

SysTimeStr
Inputs:

R15 = offset in memblock[R95] of buffer for TIME string

R95 = 0 for R0, 1 for R1, 2 for R2

Outputs:

buffer [R95]:R15 filled with string representing current time

SysTimeMilli
Outputs:

R15 = "progressive" time count in milliseconds. By "progressive", I mean a count which doesn't necessarily bear any resemblance to "real" time, but rather is a counter that is a reasonably accurate "millisecond counter" that may eventually roll over to 0, but which should not do so more often than once a day, and who's count value continues upwards (until such time as a roll-over might occur). This is accomplished on the MS-Windows platform using the GetTickCount() function. Other platforms may choose to implement this in whatever way seems easiest, while meeting the above criteria. This counter value is used for many things, including animation and timing of games, so it should be fairly accurate (we don’t want the game claiming that it took 10 minutes to solve the puzzle when it only took 8…)

SysSetCursor
Inputs:

R39 = 0 (normal), 1 (wait/hourglass), 2 (help hotlink pointer)

SysSetPgmTitle
Inputs:

R15 = offset in memblock[R95] of buffer containing program title

R95 = 0 for R0, 1 for R1, 2 for R2

SysPlaySound
Inputs:

R15 = offset in memblock[R95] of memory containing filename of sound to play

R95 = 0 if R0, 1 if R1, 2 if R2

NOTE: gets .WAV appended

SysPlayMusic
Inputs:

R15 = offset to memblock[R95] memory containing filename of music to play

R95 = 0 if R0, 1 if R1, 2 if R2

NOTE: gets ..\MUSIC\ pre-pended and .MID appended

SysStopMusic
SysIsMusic

Outputs:

R39 = 0 if no music is playing, !=0 if music IS playing

SysStartTimer
Inputs:

R15 = millisecond timer interval

SysStopTimer

SysSystemMsg

Inputs:

R15 = offset in memblock 0 of message buffer

SysMemcmp
Inputs:

R15 = offset in memblk[R95] of buffer 1

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of buffer 2

R94 = 0 for R0, 1 for R1, 2 for R2

R13 = number of bytes to compare

Outputs:

R95 < 0 if R15[R95] < R14[R94]

R95 = 0 if R15[R95] = R14[R94]

R95 > 0 if R15[R95] > R14[R94]

SysMemcpy
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

R13 = number of bytes to copy

SysMemmove
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

R13 = number of bytes to move

SysMemset
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = value to write into bytes of buffer

R13 = number of bytes to set

SysStrcpy
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

SysStrcmp
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

Outputs:

R95 < 0 if R15[R95] < R14[R94]

R95 = 0 if R15[R95] = R14[R94]

R95 > 0 if R15[R95] > R14[R94]

SysStricmp
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

Outputs:

R95 < 0 if R15[R95] < R14[R94]

R95 = 0 if R15[R95] = R14[R94]

R95 > 0 if R15[R95] > R14[R94]

SysStrlen
Inputs:

R15 = offset in memblk[R95] of source buffer

R95 = 0 for R0, 1 for R1, 2 for R2

Outputs:

R39 = length of string in source buffer

SysPrintStart
Outputs:

R15 = non-0 if successful

R14 = printable page width (pixels)

R13 = printable page height (pixels)

R12 = X-printer resolution (pixels per inch)

R11 = Y-printer resolution (pixels per inch)

SysPrintBegPage
Outputs:

R95 = non-0 if successful

SysPrintEndPage
Outputs:

R95 = non-0 if successful

SysPrintStop
SysPrintText
Inputs:

R14 = string address in memblk R95

R13 = color of text

R95 = memblk of R14 string

R12 = x-coordinate for text output

R11 = y-coordinate for text output

R37 = font handle (use SysBegText/SysGetFont)

SysPrintBM
Inputs:

R14 = source bitmap handle

R19 = X destination

R18 = Y destination

R17 = X source

R16 = Y source

R13 = Width source

R12 = Height source

R11 = Width destination

R10 = Height destination

SysPrintLines
Inputs:

R14 = address of DWORD points in memblk R95

R13 = color of lines

R95 = memblk of R14 DWORD points array

R39 = # of points in DWORD points array

SysPrintGetTextSize
Inputs:

R14 = string address in memblk R95

R95 = memblk of R14 string

R37 = font handle (use SysBegText/SysGetFont)

Outputs:

R15 = width of text as it would be printed

R14 = height of text as it would be printed

R13 = height of non-descending text

BITMAP functions: the KINT program creates a "display bitmap" automatically. A PDIBS handle of NULL refers to this "display bitmap". The NULL PDIBS cannot be deleted, but it can be written to by all of the drawing functions. The KINT program is also responsible for any "cleanup" work that needs to be done regarding the NULL "display bitmap" when the program is exiting. ALL other bitmaps MUST be deleted (using the SYS_DELBM or SYS_DELMBM opcodes) before the program exits.

SysCreBM
Inputs:

R39 = width

R38 = height

Outputs:

R15 = handle of created bitmap (NULL if failed)

SysDelBM
Inputs:

R15 = handle of bitmap to be deleted

SysDrawBM
Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

SysStretchBM
Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

R33 = width of destination

R32 = height of destination

SysDrawMBM
Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

SysLoadBM
Inputs:

R15 = offset into memory block[R95] of filename

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = file location

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

Outputs:

R15 = handle of loaded bitmap, or NULL if failed

SysLoadMBM
Inputs:

R15 = offset into memory block[R95] of filename

R39 = x-coord of transparent pixel

R38 = y-coord of transparent pixel

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = file location

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

Outputs:

R15 = handle (PDIBS) of loaded bitmap, or NULL if failed

SysSizeBM
Inputs:

R15 = handle of bitmap

Outputs:

R39 = width of bitmap

R38 = height of bitmap

SysGetWindowPos
The values returned by this function should not be USED by Kode, only saved to a “configuration” file, and then restored using the SysSetWindowPos function. The actual values returned by this function are TOTALLY “system dependant” and have
no meaning for the Kode other than saving/restoring the program’s window position
and size to disk between successive executions of the program. The “system dependant
miscellaneous value” in R11 is for use by the KINT interpreter program, to store an additional value that might be of use to the preserving of the system window “state.”

All five of these values are merely written to the program’s .CFG file and restored
the next time the program is run.

Outputs:

R15 = system window X

R14 = system window Y

R13 = system window width

R12 = system window height

R11 = system dependant miscellaneous value

SysSetWindowPos
This MUST NOT generate an OnWindowSize or OnWindowMove event! It is assumed that the Kode knows that it has changed the window and will take appropriate action, if need be.

Inputs:

R15 = system window X

R14 = system window Y

R13 = system window width

R12 = system window height

R11 = system dependant miscellaneous value

SysGetViewSize
This is the size of the “client” portion of the program window, the portion which can be drawn upon by the Kode.

Outputs:

R39 = window width

R38 = window height

SysGetScreenSize
Outputs:

R39 = screen width

R38 = screen height

R37 = size index (0=640, 1=800, 2=1024, 3=1152, 4=1280, 5=1600)

SysFlushScreen

SysRectEdged
Inputs:

R15 = bitmap handle to draw upon (NULL for screen)

R14 = RGB color for rectangle FILL

R13 = RGB color for rectangle EDGE

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysRectSolid
Inputs:

R15 = bitmap handle to draw upon (NULL for screen)

R14 = RGB color for rectangle FILL

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysRectOutline
Inputs:

R15 = bitmap handle to draw upon (NULL for screen)

R13 = RGB color for rectangle EDGE

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysLines
Inputs:

R15 = PDIBS handle (NULL==screen)

R14 = offset in memblock[R95] of (x,y) WORD coordinate array

R95 = 0 for R0, 1 for R1, 2 for R2 memory block for R14 offset

R13 = RGB color of lines

R39 = # of points in the [R14] array

SysSetPixel
Inputs:

R15 = bitmap handle (NULL==screen)

R14 = RGB color of point

R39 = x-coordinate of point

R38 = y-coordinate of point

SysGetPixel
Inputs:

R15 = PDIBS handle (NULL==screen)

R39 = x-coordinate of point

R38 = y-coordinate of point

Outputs:

R14 = RGB color of point

SysBegText
SysEndText
A SysBegText must be done before any other “font/text” functions are called (except for SysGetFont and SysRelFont).

A SysEndText must be done after all “font/text” functions are finished with.

These (always matched) pairs can be nested up to 25 deep. Their purpose is to allow the SYSFUNCS.CPP module of KINT to save/restore necessary things.

SysGetTextSize
assumes a SysBegText and a SysTextStyle have already been done

Inputs:

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

Outputs:

R39 = width

R38 = height

R37 = ascending height (height of text minus descender part)

SysGetFont
Inputs:

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

R39 = pixel width of rectangle to fit text into

R38 = pixel height of rectangle to fit text into

R37 = bits:

0 = 0 variable pitch, 1 fixed pitch

1 = 0 normal, 1 bold

2 = 0 normal, 1 italic

Outputs:

R39 = handle of font

R38 = height of font

R37 = ascending height

SysRelFont
Inputs:

R39 = handle of font to release

SysTextStyle
Inputs:

R14 = backcolor (-1 if transparent, otherwise opaque)

R13 = textcolor

R39 = font handle

SysText
Inputs:

R15 = PDIBS handle (NULL==screen)

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

R39 = x-coordinate of point

R38 = y-coordinate of point

“KASMB” header (6 bytes, null-terminated)

MAJOR revision number of minimum required interpreter (1 byte)

MINOR revision number of minimum required interpreter (1 byte)

SIZE of initialized data (4 bytes)

SIZE of uninitialized data (4 bytes)

SIZE of stack (4 bytes)

UNUSED event vector entries (10*4 bytes)

EVENT vector table (4 bytes per entry):

	OnScreenChange

	OnAlphaKeyDown

	OnAlphaKeyUp

	OnBeginStartup

	OnEndStartup

	OnWindowHidden

	OnWindowMove

	OnWindowSize

	OnPointerMove

	OnKeyDown

	OnKeyUp

	OnChar

	OnTimer

	OnIdle

	OnMusicDone

	OnQueryQuit

	OnShutdown

INITIALIZED DATA and CODE

UNINITIALIZED DATA

STACK

R0 (code base)

R3 (execution pointer)

R4 (stack frame base pointer)

R5 (top of stack pointer)

unused stack memory

 prior stack entries

DWORD arg1

WORD arg2

DWORD JSR return address

DWORD old R4 value

WORD variable1

DWORD variable2

WORD variable3

-14

-10

-8

-4

0 R4 (BP)

2

6

8 R5 (SP)

unused stack space

The diagram to the left shows a sample stack after this has been executed:

	pu0	R10,+R5	; push arg1

	pu0	R36,+R5	; push arg2

	jsr	sub1		; call function

….

sub1:

@frame_args

	arg1:	DWORD

	arg2:	WORD

@frame_vars

	variable1:	WORD

	variable2:	DWORD

	variable3:	WORD

@frame_end

…..

The @frame_args block causes an AFR opcode to be pushed, followed by a WORD which is the size of variable memory to allocate on the stack (from 0 to 64K-2). The AFR opcode effectively does this:

	pu0	R4,+R5

	ldr	R4,R5

	add	R5,=xxxx

where xxxx is the word following the AFR.

When sub1 is done with the stack, it must have this line:

@frame_del

which causes a DFR opcode to be generated,

which (when executed) effectively does this:

	ldr	R5,R4

	po0	R4,-R5

throwing away the stack variables and preparing for the RET instruction. The calling routine must (right after the JSR) do either:

	po0	R36,-R5

	po0	R10,-R5

OR do:

	sub	R5,=6

in order to clean up the args from the stack.

