HEWLETT-PACKARD

HP-85

I/0 PROGRAMMING GUIDE

_ 0.7610 - 1.0506_!
 ._ e 0.0369 5 025207 | e
S 0 | —04688 -10.5963] '

| 00726 —04109.! ~0.5334 107253 ~0.114a] 10
| 02002 —06231 | '0.4027 =B14ll 4]0.9357] G

[L4446 16867 128307
R=1 001 <—i33 L6148

Printed in U.S.A.

'ﬁf HEWLETT

PACKARD

HP-85
I/O Programming Guide

August 1980

00085-90142

Hewlett-Packard Company 1980

Contents

How To Use This Manual.................coooiiiiiiiiii e,
PARTI: Beginner’'s Guideooiii i
Section 1: Who is I/ O and What Is He Doing In My Computer?

SECHION INEFOGUCHION. ot ittt ittt ittt et ie e ettt sttt e e eererennnnsnenes
InStalling the 1/O ROM ..ottt ittt ert titiiae st tteeneneeneesesnensnnaneanss
RemoVINg the 1/O ROM . ..ottt ittt et iras et et eereeesnesnesennansaneaneans
Thedobof aninterfacec.ouiiiiiiiiii it ittt it ittt e e ettt eteeannnns
Merchanical and Electrical Compatibilityouvviiiiiiiinnr et it ennerenrerannens
Data ComPatibility oo vvvnueiintieitiitereeenit it ree s esneenneeeneesennesannssans
TimMING ComPatibility . ..ottt ittt ettt e i ia e e et ttesiaaaaennaans
Choosing the Source or Destinationvuerureveieererenensireroneneneenrnensonenensas
UsSiNg INterface Select CoUeS vuuiitiirn et eneeneenrrurenronesnernessonseeneoneeneas
UsingaPrimary Address.........c..oociiiiiininnnnnnnennn, et it ia s
Printing to Peripheral Devices ettt e i et et e e,

Section 2: Simple I/O Operationc...cooocoiiiiiiiiiiiiiii
© BECtION TNt OAUCTION. .ttt it ittt it iees et tneeneeneenensrasossonneneonnsonennenens
UsSing Simple QU T PUT StatmentS . ..ot iiittit ittt trereerensensontonionieneanesnesnesaes
Using Simple ENTER Statementscovvvenn. EE R R R T
ENtering NUMERIC Data .. ovvvtiititittinneernnernnernreenseeereeeneerensoeneeeenssonneees
ENtering SIrNg Data . .vviiiiiitiirnennrernetenteeiteenetranrennessnesosnseenssonnneens

Section 3: Formatted I/O Operations......................coociiiiiiiiiinnn..,
Section INtroduction.coiiiiiiiiii it iie e ettt it it e
Formatted OUT PUT ..ottt ittt ittt eretnteeosennesseseensroseosnnnnnneesenns

NUM BRI IMAGES .ttt ittt ittt eennterneenneenneseneoanseseseeennssonnsensssnns

£ 4T T T T T S

BN ary IMAgES .\ttt tiittt ittt enanatseennaseossneaseeesesoasesssonsorsoncans
End-of-Line Sequence lmages.ooouiiiuiietiiiiieetirerinreererioreeeeesesnnrneesnnn
Formatted ENTERoiiuiiinnirinernnennnennnenneernnrenneeenneanns N
LT - I L T o T
Skipping Unwanted Characters........ ee s e s e r e e e e e e e et e e ettt aaes

1 Eliminating the Line-feed Requirement.c.coiiiiit i ireininreeeennnneeneeeonns
- Advanced Use of Terminator IMageso.uuvuivisiinnersiteeneeenreennorsoaeeenesansaeennns
Field and Statement Terminatorsovueuetieiiiteeenenureersennreeeeeesonnnseeeeons
TOrmMiNAtOr IMAGES . ottt vttt sttt et teneteneeenaeroeeronseoereonaesnaresnoseanassonss
AWord of Advice About Imagesoviiriiiiiiiiiiiiiiii it eiiireeserierineanees

B e T V=TT I o N o - € R

?Section4: ErrorHandling ...t

PART II: Bits and Bytes and Suchc..c..cccocvoveirnenn,
Section 5: Why Worry About Bits?oooiiiiiiiiiiiieeenn.

SCON [N OdUCHION. oottt ittt ettt ie it et tetesteesnenensnreeeneososessnensanenen
ReviewofBase2................. ST
Review of Alternate Representations.uvvieir it eitvntnnreeeneeneerneonsenennennsnns
Review of Logical OperationS.ouvu et tevrerrenserrenioneeeeeeeeseneenneneeneensensennss

Section 6: Binary Functionso i
I SOCHION M OAUCTION . . o vttt teeteee ettt teereenenenenensenssesenensseoresonossonsnsesennns
F TheBinary AND FURCHION . ..o vttt ittt it ietiietnttesereetenenenrrrensasesonensnenes

The Binary INClusive OR FUNCHIOMt it tvt ittt ertenarnrereeneeseeseeneoneanesnesnesnnes
The Binary EXclusive OR FUNCHIONo.uiiittetinntintieenirnttennetaneeaneesnnsescennans
. The Binary Complament FUNCHION.v.tt ittt ittt eieeanessenseonnesanneannes
T Bt TSt FUNCHION .« ot v ittt ettettttteteenensenaenserossoneensoesonsensenesneesnoneonens

PARTIII: AdvancedI/O Operationsoooiiiiiiiiiiiiiinnns 49
| (70 073 1074 1) + AP 49
Section 8: Specialized Transfers ... 51

SACHON INITOTUCTION. v vttt v vt vieeterenneeeoeesnanosossussssesosnssnssesossnssnassoasanns 61
The Care and Feeding of Buffersovuvivriiiritiiiiisneerierroriioerereoneeesiasonnessonns 66
THE PO M OIS .+ vttt et eeseenonenseesssesssssossssosssssessosseoasasnsnnsnsaanonassnsoss 87
=TT - €177 14 I 58
Buffer Status and CoONtrol vv v vttt ieteuneereaasseeseonnnrsoseosessansossesasrasanss 58
Data TRANSFE R S ...ttt ittt triernereernneosoeeanesoososnsneeseenossasssesosoasasaneesss 61
OULPUt TRANSFER ...t ititttiiiitiietrt i teireteneeetstonoasassostsesusntonsvoiosasnes 61
INPUETRANSFER . ..ottt titnitt ittt iiieniaentnesrtataastanasosasnsssssssssessnssns 63
Section 9: End-of-Line Branchingooiiii 66
SECtiON INtFOAUCHION. .1ttt eereaerneesasorssassesssessasenanassiosonsosnsesassossssaans (-1
Some Background on INtBrrUPES ... vt vinetenresnnerineeriasontroetoerstsarsssesacssanssns 66
End-of-Line Branch Programmingovuureetiioiiorrseriosroneosansotsosssssnsassnesons 66
LYo L7 T2 1o o S 66
INtErface INterTUPLS ..ottt ittt ersnaeeresnnaaeesesasaasasssssssntonsses 66

T OULS s v v vt vt v e e aatesseeaeneeeannossnoosssessnnsssassassssonaseesosnsesnsosssansssons 68
TRANSFER TOrmMINations ... v.vvvereretneresensorssneensensintietaiiasissnceseiroisanns 70
Interactions and Permutationsc.eieeeiniuiiniiriieniiiiiiiitiiiiiiiiiiraiaieias 7
Section 10: Keyboard Controlcooiiiiiiiiiiiiiii 75
SaCtiON INtrodUCHION. . vttt ietarenaneeseeseenanesrsnssonnsesssessassasessssses 75
Koy Mask Programmingu e ieeienintiarnenrateesioesstnsasiisnonioetooasnsnsisaeanes 75
Section 11: Direct Interface Communicationscoiiiie 79
SCtiON INtrOdUCHION . oottt irie e ereeeetanasssanesoseannsaresaneossnnensssaosanansss 79
ChecKing the StatUS tt vttt ittt rtet i resaestentaensnterontossnerontseensnos 79
INEErFACE COMEIOl . vt vttt v eeter s eeeenveeasseasseassseessonessoesonsasonasoansennnoncssssss 81

PARTIV: Interface Programming Techniques......................cooooiinn, 83

Section 12: Using the HP-IBInterfaceoooiiiiiiin 86
SECtiON INtrOdUCHION . . ¢ttt ittt iaenaseeeseonnensssstesannnssonnssesoassaseassssns 856
A Basicintroductiontothe HP-1Bciiiiiiiiiriiiiiiiiiiiiiiiitsersaeenetoasnesannnns 86

First Things First o v vu i vt eie s ittt iiaenretieeterarrreneeneaonsasssssatsonsoitsnesoes 86
General Structure of the HP-IB ettt it iriiiii i sieniesasassaanns 86
DataTransfers onthe HP-IBooivitiiiiiii ittt it iietreeinntntaasoasonsness 87
Controlling the HP-IB ottt ittt it ittt ria st sieentnssesnanoonnes 89
Handling Requests for ServiCe........coveiiiiiiirtveiireeeosroiastesissrisesotossosranens 90
HP-IB OpOrationsootiiuuneeroeenneesoeenuatseissssnaseeanetssssseessnnesaosssosssanns 91
R oV 13 [4T) 1 N 91
Turn-0n and ChECK-0UL ... vvn i ettt it errriatestsossnssosssesoresssosenasseonennosssons 91
CONtrOllING thE BUS. . ..t ittt et tntrar e tsssenennenasusonsonasnsonsoisanesssnessessassns 92
HP-IB Data TranSfors .. ovuvtt et terneeeraannatoeesossesesesnsnsnesssasnsnsssessonsannans 94
Advanced |/O OperationSueu it raersearestenrsiesneenesnestostsausanssssensonesnosas 96
Handling Service ReQUESTS. ... vvvvviet vt irirerirtrsieronaeeaetsosserocssssssesoncsanss 102
Non-Controller Operationsuuiuutiiiiietetriirnrreeresoeeesnasrsestossrsrans 104
Handling Interface Problemso.iuiiiit et iieienentonroratatsainereosstseenenes 106
HP-IB Forthe Specialist.ccoovviveennns et eer e ee e e e it ey 108
HP-IB /0 StaAtOMENLS .t v v v v veeeevseennssonessaessnnsesssstossoereotoassssassenssssnns 108
Typical HP-IB OUtpUt SEQUENCEtutiterarenrieneatrneesaestersarsntateiesestonies 11
Typical HP-IB ENter S@QUONCEt tr ittt inviearenneonracssatsnestosironssnoarsonss 1M1
HP-IB CONtrol ROGISIOIS. . oo v v vvuevvuetsunesnseesiseniossreeroctsensessetsssnesssnsoennns 112
User-Defined EOL Sequence Registers....... .o iviiiineereriiierrseessirnersscnsesinns 116
HP-IB Status ROQISTErS .. vouvvvurevnreonirnsanerrirsoraseecasoraerastosseeestoaeennsosnns 116
MNEMONIC CONVENTIONS + v vttt teetnenreeannressonsossseassesonsssssansasssansossnssssnes 120
MBS CONMCOPIS « o vt e vvetterearsatneeneenssasnssseosearaansotsssssasesesrosnaonasas 120
HP-IB Control Lines ... vvetttieeeeennseeorannoensosssassonnosssaneanstnsacsanns SR 122
HP-1B CONtrol RESPONSES ... vtvuvtinerenrtonressneetietoaareeissessassssssasnsseisseenns 1256
HP-IBUnNiversal Commandscoviiiiiriiieiirrtrersreestootoorstsssnssrsssssosssnns 126
Available Bus Addresses and Codes.cvuviiirrrrnerrraieniiiiiiireanarsasssstsossoans 127
HP-1B Statement SUMMAIY ... vueteuetonessressreossostoarrotsssrsesosessssnssoasasenes 128
HP- B B OrS o v vt vttt teeananeeesauaneeeeossanasensosaossssossasasssossssanatsosssosnns 130

Section 13: Using the Serial Interfacecoooiiiiii. 131
SeCtiON INErOAUCHION . . v vttt ittt it eeiia et etieetsaanassaassaneanoaessesnsnarsssssesanss 131
Introductionto Serial Interfacingccv ittt iriiiieireriiiatiiriisiirasressasaenanes 132

DataTerminal EQUIPMBNTt tiiiativteiitn et tarisoaseeratisitosrsneenrasaesnsasans 132
Data Communication EQUIPMENTui vttt iriirenreeaiteiiocosiesoorseessesorasesanss 132
Asynchronous Data TransmisSsionueeueeeriiiene et oiieeitaraaeiioneacaneeieanes 133

01Oy T T o (- 134
L1 4 E 134

8] (o = 1 134
Transfer Rates (0r Baud)vuvriiuniiniieriiti ittt et e e ey 136
Handshakesin it e it e e e e 136
Printer and Terminal INterfacinguuiuniiti e irsnrernenesnerenenssnsnennnnins 1356
L G L) -y - 1o T 136
Terminal INterfaceiviuiuiiniin ittt ittt ettt e teeeeaenrnenenennnns 138
LT -] L T 139
Advanced Serial INterfacing........ouvuveeniniirninienieiienrereriornencesenenns eereiana. 140
HaNAShaKeS .. .ottt ittt e et et e s 140
T T 141
Auto-originate and AUto-aNSWers ROULINESvreternertr e enreereenenenrneneennns 143
LT T T 146
T 1= - 0 146
T 1 - 146
LT T - 148
(0oL e] T T - i 148
T T T L i 149
T 1 = 160
LT 1T € 162
T 1 - N 163
LT L - N 153
- T - o - 154
oo - 154
CoNtrol REgIStar 10uit ittt neeetter e eneneerseenseensosensosesensnsanaes 166
StAtUS ROGISTOr 10 .ot ititi ittt ettt teeiatearen oottt ereeneeensaeneneensnnnens 156
(o0 a1 g T T o =T e 167
SHAtUS RBgIStOr 11 ...ttt ittt ittt etees et e teressusnenrensesnenennens 158
Control Registers 12 through 15 uiuivttveintrerrent i i enrensenrrnernesnesnnennens 158
CoNtrol RegISTOr 16ttt iete et er ittt enraeerenenreesnenensaneas 159
Control Registers 17 through 23ttt it ettt ettt ereereeanneannesennes 160
Troubleshooting Hints . ..ttt e i ittt et v s itenienrenrenraneaneannenns 161
SOrial 1/ 0 SAIOMONES . ..ttt vtit et tetee et et eneenseeerenenenrerteerteteenenearaees 162
Serial INterface Errors . .. ouo it ittt i et e e e e e 162
Section 14: Usingthe BCD Interfacecl 163
SCtION INFOUCHION. Lttt ittt it et ettt teeaneeeeenenarnarnnonnonsonsennsnsensennsnnes 163
Binary Coded Decimalcoviuuiiiiiiiiinntirirnetnteeaneernnrensseennsennneennnes 163
Dataand Handshake Linesuvutiiiiiinrnneerneerntetnneeriersneeesseseesasenanes 164
Operating Modesttt iiititttreatenerastarastnsonneonennennsvaens 164
DefaUlt FOrMAtsvinin ittt terteetetsetenaeneorennenesneonsonnsonennonuonnos 164
[T 1 1T 166
Program StatemeNtsvuuivrueiiutieirernneeeneseneerneernesoninernnreensseanesennns 166
USiNG the INterface . ..o v vttt ittt rensirneeenteenteeaneennaeroreeennseasseraneess 166
Programming with Default Formatsovuitii i inr et iiienreireneoneanesnaonsonns 166
Partial Fieldsoviuuininiiitiiiiiieiiititeineraneeaeeaneereneesuneennnssnnnennnns 170
L1 T 171
IEBITUDES & ottt vttt it eeteesaetoeaeeenoonuoosuesonasonseenneerasesenessonseannns 173
MUl INtErrUPES oottt ittt ittt ettt i reneereneerasernnessnnsonnnns 174
Registers..........oovvviiiiiniiiiiann, O N 176
Read RegiSter O vttt iiteiireesreenestoaenaunieesronennsoseosennnnns 176
Read RegiSter 1 ... ottt ittt irit sttt reatooneeroasoesanaanenoannns 176
Read Register 2ttt ittt ittt it e iain et 176
WIHtO ROGIStOr Oottt ittt ittt s eonenentsonanssssonennonsensnns 176
Wit Registeor 1 ... i it i ittt ettt e aansassonsonensonsons 177
B ROGISTOr 2 ..ottt ittt tenenaesreanaeessoonaasoesonennesosnonnonnneens 177
LT TE- T P 178

L2 0T T =T AP 179

L2 1T T T AP 179

L LT T =T - AU 180

L =T - =T 180

L2 LT 3T - O PP 181

L2 Lo T T PN 182

I £ 0T 1E5) (=T T 183
- NON-StaNdard FOrMattingo vvtvrstetieeternsenstieereereensenaenrenenesonsoosnennsnns 184
Single Channel Formatting.uiiiiiuiiiiiiii ittt iiiiiiteereaniaseneseannns 184

| DualChannel Formattingociiviii ittt ittt ieeeenreesnensenssenssssnsssons 186
DAta OULPUL . vt ttte sttt iinseraesannsannseoneanseeensessessassoanssessisoennesenneronnses 187
LI =111 A A 188
BCD 1/0 Statementsovuuuuttttteniteettennuseesesnnsaesossnnstssssessnsssssessanns 188
BCDINterfaCO ErTOrS v vvtiitie e s iiorsaaesoneosreessesseosonssansensosssssnsensesnons 189

. Section 15: Using the GPIO Interface...................coooiiiiiiiiiiiiniinine. 191

SectionIntroduction.cciviierirnsnesiiriiiiiiasnan, P 191
Essentials of aParallelInterfacecoviiieiiernreniniiiiiiiiiieriainana preeneeae 192
Direction of Data FloOW ..o vvriirirriiiiiieiiisrssnsosssessssessossssenssasannans SRR 192
Number of Bits @Nd PoOrtSovvtvirretiirreetrresssorresoesoasossasssssasrsosasnssacnns 193
UsSiNg Primary AdAreSSeso vuutieretiurorieeseresraesraseerasertsssantossssasssssnnss 194
Handshake Methodsvuvvrvrereeeinentneeessasceeseasnsansceossosnsnssssensnnns 196
Selecting the Handshake Methodcoviiniieiiiiiiie it iiiiirieeiennenneanenanns 202
Setting the Logic POIArIYuvetieivtsniintisiuirriesrerteiseiseinesorersorsenesnsannans 2086
WhyWont This TRING OULPUL? ..o outivuiiiitrenresrierrosrennoeeassenssorasssenssssnnsns 207
Choosing the Methodof Transferccvviiiiiiiiiiiiiiiiiiiiiiiisiieernireornsanonss 208
Advanced Capabilitiesviviiiiiieiietiiiriiittrtrriieriistiieiartorustiereranaes 209
FHS and INTR Transfarsueteeivirneeerenrsressesesssssssennasaossserssssnsesssanrans 209
EOL S OQUBNCE . .ot veeernereuaseaosaunssanesssssonasossnostasenaseesessostossossonnns 211
DirectUse of Control LiNesoviiurtiininiiiiiiiinieeisiisareosssnsssaseeersnnnns 212
[11 4/ B R R 214
oY oL T4 0 T o {3 S 2156
The Trigger FUNCHIONotiiiii ittt innnntesrneenuaeessasenonsssassnsnosnocasss 219
GPIO 1/0 StatomeNts . .vvvuvrnueeeerenneeeosonnsesssnonsosoersssassssosessosnssssesrnonns 222
GPIO INtErfaCE ErTOrS. vt vv vt veeroaeaneasssosssosraasssssosssssosssssosssssssassssveasns 223
PART V: AppendiX........cooiiiiiiiiiiiiiiiiiii e 226
Syntax Reference.............cooviiiiiiiiiiiiiiiiiiiii e 227
Interface Register Mapscoooiiiiiiiiii 283
Sales and Service OffiCescooviiiiiiiiiii i i 296
Subject INdeXooviviiiini 299
Error MeSSAZeSoooiiniiiiiiiit it 306
ASCII Character Set.vuviiiriitrtrinetetiieeeerareeriiettenaeeniassrneonnnes 310
v

How To Use This Manual

Please take a minute to read this introduction so that you can better understand how this manual is organized
and how to get the most utility from it. The HP-85 I/O ROM can open a whole new world of capabilities and
applications for your desktop computer. This manual takes you from the simple, beginning concepts on
throug}h to many advanced and more complex operations.

Part [is the I/O beginner’s guide. If [/O programming is a new experience to you, it is recommended that you
start réading at the beginning of Part I and keep going until you have learned enough to perform simple
operations with your external device. It is not necessary to understand everilthing in Part I before you can do
succes}sful I/O programming. However, if things don’t work as you had expected, that is probably an
indicaﬁon that you need to read more. Even if you are an accomplished I/O programmer, it won’t hurt to

" make a quick pass through Part I. The concepts presented are basic, but you still need to know how they are
implerhented on the HP-85. :

Part H} describes the utility functions available for working in alternate number bases. The I/O ROM works
just fine in base 10; it is not necessary to use any alternate number bases to do I/O on an HP-85. However,
alterna{te bases can be very helpful, especially when there are so many useful utility functions. If you are
alreadﬂl familiar with concepts like base 2, one reading of Part 2 should give you a working understanding of
how alkernate number bases are handled by the I/O ROM. If Hex and Octal are new to you, don’t worry about
Part 2 kight now. You can always come back to it later.

Part I1I covers the advanced capabilities of this I/O ROM. If you are an accomplished I/O programmer, this is
where you will be spending your time. The HP-85 I/O ROM has an impressive variety of features. It takes
careful: reading and some practical experience to get optimal benefit from them. If you are a beginner, try to
get youjlr program working with the tools presented in Part I. Come to Part III if you find that you need more
capability.

Part IV focuses on the ‘‘business end’’ of I/O: the interfaces. A functional I/O system is a blending of
softwafe (the program) and hardware (the interface). Part IV talks about the interfaces from a programming
point 6f view. Although an interface like HP-IB keeps you *‘insulated’’ from the hardware, HP-IB has a
vocabﬁlary of its own. You should at least read the first half of Section 12 to understand the programming

stateménts used with HP-IB. With an interface like the 16-bit GPIO, you have a handful of unconnected
wires, and you want all the information possible. Read the Section in Part I'V that pertains to your interface.
Also, be sure to read the Interface Installation and Theory of Operation manual.

Part V is the Quick Reference Appendix, primarily intended for experienced programmers. It is a reference
section, designed to provide rapid access to information. AllI/O ROM statements are summarized alphabeti-
cally. The syntax of each statement is stressed in this reference, making it handy for those times when you
need td see a statement’s proper form. In addition to syntax information, this appendix includes descriptions
of all parameters, concise descriptions of all statement actions, maps of all interface registers, descriptions of
error rﬁessages, and other useful tables.

vi

s GE RS SR e G e
Gaanea e
e

.

taa

...

G
Lo

0

i

o

.
e
i
e

s

e

iy nesend
e .

o
.
- -
...

.
- Teo et ey
... ..

e
Ghdubnanad
Cha

G

e
.

o
.

e

> e
Glbieie e e

Goion it e

...

o
e

o -
e

o

Section 1

Who Is I/O and What Is He Doing In My Computer

Section Introduction

You have heard about *‘IRS’’, ‘““UFO”’, and “‘IOU’’. Now you are faced with the challenge of learning about
““I/O”’. This stands for ‘‘Input/Output’’, a powerful capability of your HP-85 computer. The Owner’s Guide
explains all of the many ways to perform computations using your computer. These computations place
results into variables. Variables can be chosen to hold numbers or letters. You can see the current contents of
any variable by printing it or displaying it. Being human, you can enter numbers or letters into the computer
by using the keyboard. These familiar activities can be used to help define some I/O terminology. I/O
operations are always referenced to the computer. Input means that the data comes from an external device,
called the source, to the computer. Output means that data goes from the computer to an external device,
called the destination. The external device which is communicating with the computer is often called a
peripheral device. '

When a human is acting as the peripheral device, the keyboard is the source and the CRT (or printer) is the
destination. As long as a human is the only peripheral device, this system works well. Humans have little
trouble reading data from a CRT. Humans have little trouble inputting data to a keyboard, although some of
us have more trouble than others. But the difficulties experienced by a novice typist are very small compared
to the difficulty of building a machine that can successfully enter data using a keyboard. To stretch your
imagination even further, try to design a machine that can correctly read data from a CRT. Obviously, the
keyboard and CRT are not effective vehicles for communicating with other machines. Something else is
needed. That something else is an appropriate system of 1/O interfaces, and the means of communicating
with those interfaces. The following sections discuss these two elements of an I/O system in greater detail.

2 Whols I/O?

Installing the 1/0 ROM

CAUTION

ALWAYS SWITCH OFF COMPUTER POWER BEFORE INSERTING OR REMOVING ROMS AND
INTERFACES. FAILURE TO DO SO CAN DAMAGE THE COMPUTER.

- The HP-85 has four slots located in the back of the computer. These slots are used to hold extra memory,
option ROMs and interfaces. The I/O ROM should be installed in the ROM drawer, which is then installed in
one of the slots. The installation procedure is as follows:

1. If thé ROM drawer is already plugged into the computer, TURN OFF power to the computer ahd
remoye a ROM drawer.
2. Remove the plastic cover from an empty ROM socket.

3. The R:OM and its socket are keyed so that the ROM can only be inserted one way. Align the ROM so
that its chamfered end matches the chamfered end of the socket.

4. Pressithe ROM lightly into the socket until it is even with the top of the drawer.

5. With the ROM labels facing up, press the ROM drawer firmly into one of the slots. The drawer and slot
are kéyed so that the drawer cannot be installed upside down.

Removing the 1/0 ROM

The procedure to remove a ROM is as follows:

1. TURN OFF power to the computer.

2. Remove the proper ROM drawer,

Who Is I/0? 3

3. Turn the drawer over and remove the ROM by using a pen, pencil, or small screwdriver to push gently

through the hole underneath the ROM.

The Job of an Interface

An interface is the hardware link that is needed to allow efficient communication with peripheral devices.

The job of an interface is to provide compatibility in four major areas. These are:

e Mechanical Compatibility

e Electrical Compatibility

e Data Compatibility

e Timing Compatibility

The following diagram shows these general roles of an interface in its position between the computer and the

peripheral device.

Computer

Computer
l Compatible
Connector

/

TTITTTTT

Logic
| Level
Matcher

L - - - - - - - - — _

Data
Format
Translator

Interface Functional Diagram

T erface]

Interface

Device
Compatible
Connector

-

Control
Supervisor

Cable

Logic
Level
Matcher

Peripheral

4 Whois 1/0?

Mechanical and Electrical Compatibility : | .

Mechanical compatibility simply means that the plugs and connectors must fit together. The 829XX Series
interfaces are designed to be mechanically compatible with your HP-85 computer. Certain interfaces, like
HP-IB, are always mechanically compatible with their peripheral devices. Other interfaces, like the 16-bit
parallel interface, are ordered without peripheral connectors. In these cases, it becomes your responsibility to
install a mechanically compatible connector. If you need to do this, study the Installation and Theory of
Operation rhanual supplied with your interface. Electrical compatibility means that the interface must change
the voltage and current levels used by the computer to those used by the peripheral device. The situation here
is similiar to the mechanical compatibility case. That is, all HP-85 interfaces are electrically compatible with
the computer, while only some are automatically compatible with the peripheral device. If you have ques-
tions about| the electrical compatibility with your peripheral device, study the Installation and Theory of
Operation rhanual.

Data Compatibility

Mechanical and electrical compatibility alone do not guarantee that the computer and peripheral device will
be able to cpmmunicate. Another requirement is that both devices must understand the data being sent by the
other. Just 'as two humans who do not speak the same language need a translator, messages between the
computer and the peripheral device may require some form of translation. The computer, with its versatile
programmitjlg capability, usually performs this function. However, this job is sometimes given to the inter-

face. The BCD interface is one example of giving the translation process to the interface. To handle those
cases where the computer performs the data translation or conversion, the I/O ROM provides a wide variety
of special functions and conversion capabilities. These capabilities are covered in subsequent sections of this
manual. '

Timing Compatibility

The speaking and listening rates of most humans are well matched. Computers and their peripheral devices,
on the othe} hand, have such a wide range of operating speeds that an orderly mechanism is required for
successful transfer of data. This timing mechanism is referred to as handshake. Although there are different
varieties of handshake, the basic sequence can be summarized as follows:

1. The r#ceiver signals that it is ready for an item of data, then waits for a signal from the sender that the
data 1§ available.
2. The sénder outputs an item of data and signals the receiver when the data is available.

3. When|this ‘‘data available”’ signal is recognized, the receiver inputs the data and signals that it is busy
with this input operation.

4. The sender waits until the receiver is ready before it makes a new item of data available. When the

receiver is ready, this process repeats.

WhoIs 1/0? 5

‘ The following simplified diagram further illustrates the general concept of handshaking.
L “l am ready for data”
“The data is valid now" -
Source Destination

Handshake Lines

Data Lines >

To send a message to someone through the mail, you must specify their address before the post office will
even attempt delivery. So it is when you want to communicate with peripheral devices. The device with
which you want to communicate must be specified in your program. This selection process is called addres-
sing. The HP-85 addresses its peripheral devices through the use of a device selector in the I/O statements. A
device selector is a number that works alot like the address numbers you would use when mailing a letter.
There are two basic kinds of device selectors used on the HP-85. Choosing the proper device selector
depends upon the interface used and the way it is connected. The following two discussions detail the two
types of device selectors.

Using Interface Select Codes

If you are not using an HP-IB interface, and you have only one device connected to the interface, the device
selector can be simply the select code of the interface. An interface select code is analogous to a house
number in a mailing address. It is a number between 3 and 10 (inclusive) that identifies the interface. Each
type of interface is set to a different select code at the factory. The following table summarizes these factory
settings.

Part Number Name Select Code Setting
82937A HP-IB . 7
82939A Serial (RS-232) 10
82940A GPIO (Parallel) 4
82941A BCD 3

Note: For electrical reasons, you must never plug in two interfaces that are set to the same select code.

6 Wholsl/O?

Serious electrical conflicts can result if the interfaces and and select codes do not correspond uniquely. In
other words, if there are two interfaces present with the same select code, nether one of them will work. As ’
you can see from the preceding table, the factory settings prevent this from happening unless you are using

two interfaces of the same type. If you need to use two interfaces that came with the same factory setting, you

must change the select code on one of them. The procedure for changing a select code is covered in the

Installation and Theory of Operation manual for your interface. Follow its instructions carefully.

Using a Primary Address

If you are using an HP-IB interface, or if you have more than one device connected to an interface, the device
selector is a 3-digit or 4-digit number formed from the interface select code and a primary address. This
method of addressing is like mailing a letter to someone in an apartment building. Giving the street address
will get the| letter to the right building, but you still need to specify an apartment number to get the letter to
the final de%tination. When a primary address is used, it is analogous to the apartment number. It indentifies a
specific device to be selected from a group of devices serviced by one interface. Some examples:

o A device selector of 721 specifies device 21 on interface 7.
o A de\J‘ice selector of 301 specifies device 1 on interface 3.

e A device selector of 1002 specifies device 2 on interface 10.

Printing to Peripheral Devices

One-of the simplest ways to direct the computer’s output to a peripheral device is the ‘‘PRINTER IS”’
statement. The Owner’s Guide tells you about directing output to the CRT by specifying ‘‘PRINTER IS 1"’
or to the intérnal printer by specifying ‘‘PRINTER IS 2°°. The I/O ROM provides the capability of printing to
external devices by using statements such as ‘‘PRINTER IS 4’ or ‘‘PRINTER IS 720°°. Any valid device
selector can be used with thé “PRINTER IS’’ statement. The same holds true for the ‘*‘CRT IS’ statement.
Your previous experience with ‘‘PRINTER IS’’ should help you understand why the interface select codes on
the HP-85 start at 3, instead of 1. Device selectors 1 and 2 are assigned to the CRT and internal printer,

respectively.

The ‘PRINTER IS”* device is the destination for the output from all ‘‘PRINT”’ and ‘‘PLIST”’ statements.
The ‘‘CRT iS” device is the destination for the output from all “‘DISP”’, ““LIST’’, and ‘*‘CAT"”’ statements,
as well as all ““Error”’ and ‘““Warning’’ messages. Graphics output always goes to the internal CRT, not to the
““CRT IS’ device. When programs are listed to a peripheral device, each program line is output as a single
string. Thefe is no indenting or 32-character wraparound as occurs when listings are done on the internal
printer.

Note: if your only I/O requirement is to direct program listings or the output from “PRINT” statements
to an external device, you need not read any further. Simply connect the desired interface and include ‘
the appropriate “PRINTER IS” statement in your program.

Section 2

Simple I/O Operations

Section Introduction

Section 1 talked about performing output operations with PRINTER IS and PRINT statements. Although this
simple technique is very handy, it falls short of the mark in many circumstances. The most obvious shortcom-
ing is that there is no corresponding ‘*‘KEYBOARD IS’’ statement to allow input from external devices. Even
when output is the only desired operation, it can be very inconvenient re-specifying the PRINTER IS device
all the time when a program communicates with multiple peripheral devices.

The principal tools for using interfaces to move data in and out of the computer are the OUTPUT and
ENTER statements. These statements are the ‘‘core’’ of 1/O operations. They are usually the fastest and
easiest ways of getting data from the source to the destination in its final form. Many applications require no
more than the proper use of OUTPUT and ENTER.

Simple OUTPUT and ENTER statements (as described in this section) use ASCII representation for all data.
ASCII stands for ‘“‘American Standard Code for Information Ihterchange”. It is a commonly used code for
representing letters, numerals, punctuation, and special characters. The ASCII code provides a standard
correspondence between binary codes that are easily understood by the computer and alpha-numeric symbols
that are easily understood by humans. A complete list of the characters in the ASCII set and their code values
is included in the Appendix.

When special formatting is desired or when binary code is handled directly without using ASCII representa-
tion, the ‘“‘OUTPUT USING”’ and ‘‘ENTER USING’’ forms are very convenient. These forms are discussed
in Section 3.

8 Simple /O Operations

Using Simple OUTPUT Statements '

A simple OUTPUT statement can be used anywhere that a simple PRINT statement is proper. The OUTPUT
statement contains the device selector(s) of the destination device(s) and a list of the items to be output. The
primary difference between OUTPUT and PRINT is that PRINT statements do not contain a device selector.
Here are some examples of properly syntaxed OUTPUT statements:

OUTPRUT 1 ; “‘Hello”’

OUTPUT 3; X

OUTRUT S1 ; A$,B$

OUTPUT 703,725 ; X;Y;Z
OUTRUT 1000 ; A(1);B(3),N$[2,7]

Notice that a semicolon is used to separate the device selector from the output list, and commas or semicolons
can be used to separate items within the output list. Items in the output list may be numeric variables,

numeric codstants, string variables, or string constants. A Carriage Return/Line Feed (End of Line sequence)
is output after the last item in the output list.

The differetice between using a comma and a semicolon to separate items in the output list is the spacing, or
field of the items. The simple OUTPUT statement uses the same field widths as the PRINT statement. The
semicolon calls for a compact field, while the comma produces free field. These fields are summarized in the
following table.

Numeric Data

String Data

Compact Field

Free Field

Digits of the number
are output, preceded
by a space (if plus)
or a minus sign (if
minus), and followed
by one space.

Digits of the number
(with leading space
or minus sign) are
output left-justified
in a field of 11,21,
or 32 characters.
Trailing spaces are
output as-necessary
to fill the unused
portion of the field.

Characters of the string
are output with no
leading or trailing
spaces.

Characters of the string
are output with no
leading spaces and no
more than 20 trailing
spaces.

5

The actual field width in free field is determined by the same process used when items are output with the
PRINT state.fment. Therefore, the computer ‘‘pretends’’ that it is displaying items on the CRT and sets a field
width that would cause the items to start in column 1 or 22 of the 32-column display. Chances are that this

type of free %ﬁeld will be of little use on most peripheral devices. For example, columns of numbers will not ‘
be lined up if they are sent to an 80-column wide printer. However, it is easy to circumvent this ‘‘problem’’
by separatinig items in the output list with semicolons, or by using formatted output as explained in Section 3.

Simple I/0 Operations 9

Using Simple ENTER Statements

A simple ENTER statement can be used anywhere that an INPUT statement is proper. The ENTER statement
contains the device selector of the source device and a list of items to be entered. Remember that INPUT
statements always use the keyboard as the source and contain no device selector, while ENTER statements
always use a peripheral device as the source and contain the device selector of that device. Here are some
examples of properly syntaxed ENTER statements:

ENTER 3 ; X
ENTER S1 ; A$,B$,C$
ENTER 703 ; X,Y,Z
ENTER 1000 ; A(1),B(3),N$

Notice that a semicolon is used to separate the device selector from the enter list and commas are used to
separate items within the enter list. Items in the enter list may be numeric variables or string variables.

To use the ENTER statement effectively, it is important to understand what constitutes the beginning and
ending of an entry into a variable. The simple ENTER statements just shown use a *‘free field format’’ for
processing incoming characters. This format operates differently with string and numeric data.

Entering Numeric Data

The computer enters numeric values by reading the ASCII representations of those values. For example, if
the computer reads an ASCII ‘1", then an ASCII “‘2”’, and finally an ASCII “‘5’’, it places the value one
hundred twenty five into a numeric variable.

Understanding the process that the computer uses to read a free field number can help you remove much of
the “‘mystery”’ from I/O. Suppose your program has the statement:

ENTER 3 ; X,Y .

Now assume that when this statement is executed, the following character sequence is received through the
interface at select code 3:

The computer ignores all leading non-numeric characters, so the ‘ TUESDAY DEC ’’ characters do nothing.
Then the ““11”” is read. Once the computer has started to read a number, a non-numeric character signals the
end of that number. Therefore, the comma after the 11 causes the computer to place the value eleven into X
and start looking for the next value. The space in front of <1979’ is ignored and the computer reads the
*“1979". The carriage-return character causes the computer to place the value nineteen hundred seventy nine
into variable Y. Finally, the computer keeps reading until it finds a line-feed character. This terminates the
ENTER statement, so the computer goes on to the next program line with X=11 and Y=1979.

10 Simple I/O Operations

The process just described can be easily summarized. When entering numeric data using free-field format,
the computer:

1. Ignorés leading non-numeric characters.

2. Ignores all spaces — leading, trailing, or imbedded.

3. Uses numeric characters to build a numeric value.

4. Terminates the building of a value when a trailing non-numeric character is encountered.

5. Input$ characters until a line-feed character is encountered
The discussion so far has referred to numeric and non-numeric characters without being specific. The digits
*0’” thru *¢9”’ are always numeric characters. Also, the decimal point, plus sign, minus sign, and the letter

“E’’ can b¢ numeric if they occur at a meaningful place in a number. For example, assume that the following
character s¢quence is read by an ENTER statement:

If a numeric value is being entered, the leading minus signs and the *‘E’” in ““TEST”’ will be ignored. They
have no me¢aningful numeric value when surrounded by non-numeric characters. However, the characters
*“12.5E—3"" will be interpreted as 12.5 x 1073. In this case, the minus sign and the exponent indicator (‘‘E’’)
occurin a fneaningful numeric order, so they are accepted as numeric characters.

Entering String Data

The compu?ter enters string data by placing ASCII characters into a string variable. The process used for
~ free-field entry is straightforward. All characters received are placed into the string until:

1. The string is full or,
2. A line-feed character is received or,

3. A carriage-return/line-feed sequence is received
Assume that the computer is executing the statement:
ENTER 4 ; A$,B$,C$

The following character sequence is received:

Simple I/O Operations

The letters ‘‘HELLO’’ are placed into A$ when the first line-feed is encountered. Note that the line-feed
itself is not placed into A$; it acts only as a terminator for the entry into A$. The the entry into B$ begins.
However, a carriage-return/ line-feed sequence is read immediately. This terminates the entry into B$. Since
neither the carriage-return or the line-feed is placed into B$, B$ becomes the null string. Next, the entry into
CS$ begins. The characters *“THERE’ are placed into C$, terminated by the carriage-return/line-feed follow-
ing those characters. With the enter list now satisfied and a line-feed detected at the end of the data, the
computer will go on to the next program line.

Note that carriage-return characters are only ignored when they are immediately followed by a line-feed
character. If a carriage-return is received and not followed by a line-feed, the carriage-return is placed into
the string.

Another example can be used to show termination on a full string. This time, suppose the program contains
the following statements:

DIM X$[3]
ENTER 4 ; X$

The following characters are sent to the computer:

The computer places the characters *“BOY”” into X$, which fills the dimentioned length of 3. Then the
computer continues to read the incoming characters until a line-feed is encountered. At that time, the ENTER
statement is completed, and the computer goes on to the next program step with X$=‘BOY"’.

11

12

Section 3

Formatted I/O Operations

Section Introduction

Although free-field format works well for some /O situations, there are times when more control over format
is necessary. Perhaps the data is some binary pattern which has nothing to do with ASCII, or a line-feed
terminator is not wanted or expected, or a column of numbers with the decimal points in line is desired, or
numbers with only 2 exponent digits instead of 3 are required. There is a wide variety of reasons for desiring
format control during I/O operations.

The format of information sent or received through interfaces is controlled by the use of image specifiers.
These image specifiers can be placed in an image statement or can be included directly in an OUTPUT or
ENTER statement. This section of the manual provides details on the meaning and use of image specifiers.

Formatted OUTPUT

An output image can control all major characteristics of output data, including spacing, appearance of the -
field, form of data representation, and use of end-of-line sequences. The HP-85 uses an output image when
some form of the OUTPUT USING statement is encountered. There are two forms of this statement:

1. 10 IMAGE <output image>
20 OUTPUT ds USING 10 ; <output list>

2. OUTPUT ds USING <output image> ; <output list>

The examples above show the general forms of the OUTPUT USING statement. Here are some specific
examples:

10 IMAGE “‘Total ="*,ZZ.D
20 IMAGE 5A,2X,17A

60 OUTPUT 4 USING 10 ; C1,C2,C3

70 OUTPUT 701 USING 20 ; A$,BS

80 OUTPUT 9 USING “‘#,B”" ; X

90 OUTPUT S3 USING *“MDDD.DD"’ ; T(1),T(2)
100 OUTPUT 710,711 USING I$; N$,A

13

14 Formatted /O Operations

In the general forms, the ‘‘ds’’ stands for ‘‘device selector’’. Device selectors are explained in Section 1.
The symbol ‘‘ <output image>"’ represents a proper list of image specifiers. The image specifier list may be
a literal enclosed in quotes or the name of a string variable which contains the specifier list. The specifiers
within the list must be separated by commas. The list of items to be output is shown by *‘<output list>"". It
does not matter whether you use commas or semicolons to separate items within the list. All spacing is
controlled by the image specifiers, so a semicolon has the same effect as a comma.

Numeric Images

The image $pecifiers in this group are used to control the form of numbers which are output. Most of these
image specijfiers are the same as the PRINT image specifiers that may already be familiar to you. Since there
are many numeric images, these specifiers are broken down into three categories in the following discussion.
The categoﬁes are ‘‘digit characters’’, ‘‘sign character’’, and ‘‘punctuation characters’’.

Digit Charjacters

These are the image specifiers which form the digits of the number. They allow you to determine the number

of digits before and after the decimal point, display or suppress leading zeros, and control the inclusion of
exponent information.

Im#ge
Specifier i Meaning

D Causes one digit of a number to be output. If that digit is a leading
zero, a space is output instead. If the number is negative and no sign
image has been provided, the minus sign will occupy one digit place.
If any sign is output, the sign will ‘‘float’’ to a position just left of the
left-most digit.

Z Same as ‘‘D’’, except leading zeros are output.

Same as ‘‘D’’, except leading zeros are replaced by asterisks.

E Causes the number’s exponent information to be output. This is a
5-character sequence including the letter ‘‘E’’, the exponent sign, and
three exponent digits.

e Same as ‘“‘E’’, except only two exponent digits are output.

K Causes the number to be output in compact format. No leading or
trailing spaces are output.

Formatted I/0O Operations 15

‘ Sign Character

These are the image specifiers used to control the output of sign information. Note that if no sign specifier is
included in the image, negative numbers will use a digit position to output the minus sign.

Image
Specifier Meaning
S Causes the output of a leading plus or minus sign to indicate the sign
of the number.
M Causes the output of a leading space for a positive number or a minu:
sign for a negative number.

Punctuation Characters

These are the image specifiers used to control the output of punctuation within a number, such as the
inclusion of a decimal point.

Image
Specifier Meaning

‘ o Causes an American radix point to be output (a decimal point).
Causes a European radix point to be output (a comma).
Usually placed between groups of three digits. Causes a comma to be
output to separate the groups of digits (American convention).

P Same as ‘‘C”’, except a period is used to separate the groups of digits

(European convention).

It would be unrealistic to attempt examples of all possible combinations of these numeric image specifiers.
The following examples show some of the many ways of combining these specifiers and the resulting output
when numbers are sent to a typical printer. Additional examples for many of the specifiers can be found in the
“‘Printer and Display Formatting’’ section of the HP-85 Owner’s Manual.

16 Formatted /O Operations

Example Statement Printed Output .

CLTFLIT FEl LS THG

CLITFUT L THG

CUTRUT LIS THG

OUTFUT FPEL LETHG

DUTRUT PA1 USTHG

QUTRLT Ll T IICT N A T A (Overflow Error)
AUTFRLT W IHG pooe s R

OUTFUT

USTIHG "MZ. 000"
OUTFUT LD

s THG MO none
..... 1 L UETHG TE CDDEY

GUTPUT &1 LIETHG
DUTFLUT FaL LETHG
DUTFUT VAL USTHG

Notice in these examples that the image ‘‘ZZZZ’’ and the image ‘*4Z’’ mean the same thing. The same is true
for the *“D’’ and “‘*’* specifiers. You can indicate the number of digits desired by simply placing that
number in front of the specifier. The use of parentheses, as in ‘“3(D)’’, means something different. The
image “3Di” means ‘‘output one numeric quantity in a three-digit field’’. The image ‘*3(D)’’ means *‘output
three numetric quantities, putting each one in a 1-digit field’’.

Be careful jof overflow conditions when using these image specifiers. An overflow occurs when the
number of ﬂigits required to accurately represent a number is greater than the number of digits allowed
for in the image. If this happens, a warning is issued and something is output so that the program can
continue. ﬁowever, exactly what is output is difficult to predict and will probably bear little or no

resemblance to the number that caused the overflow.

Formatted I/O Operations 17

String Images

The image specifiers in this group deal with the output of string characters. They can also be used in
combination with the numeric image specifiers for spacing and labeling purposes. All of these image
specifiers are the same as PRINT image specifiers that may already be familiar to you.

Image
Specifier Meaning

A Causes the output of one string character. If all the characters in
the current string have been used already, a trailing blank is out-
put.

““literal”’ A “‘literal’’ is a string constant formed by placing text in quotes,
using the CHRS$ function, or a combination of the two. The charac-
ter sequence specified is output when a literal image is encoun-
tered. When the literal is enclosed in quotes, the quote marks
themselves are not output.

Literal images are commonly used for labeling other output.
Literal images cannot be placed directly into OUTPUT statements.
An IMAGE statement must be used if literal images are desired.

X Causes the output of one space.

K Causes the string to be output in compact format. No leading or

trailing spaces are output.

The following examples show some of the many ways of using these specifiers and the resulting output when
the characters are sent to a typical printer. Additional examples for these specifiers can be found in the
‘‘Printer and Display Formatting’’ section of the HP-85 Owner’s Manual.

Example Statements Printed Output

1
CLE" . "EAM
5.5

AR S
PEL USIHG 18 5 T.A% TOTAL = 125 CRARS

Notice that the *“X’’ and ‘‘A’’ image specifiers allow a number before them in the same fashion as the
“D’’, *“Z’’, and ‘‘*’’ specifiers. The ‘‘K’’ specifier works equally well with string data or numeric data.
String and numeric image specifiers can be combined in the same image statement. If literal (string
constant) images are desired, they must be placed in an IMAGE statement.

18 Formatted I/O Operations

Binary Images

These image specifiers are not available without the I/O ROM, so they may not already be familiar to
you. These|images are used to cause information to be output as one or two binary bytes, rather than as a
character representation. Part II of this manual explains the details of binary (base 2) representation. If
you are unfamiliar with binary numbers, it is suggested that you read Section 5 before trying to use the
binary image specifiers.

The items to be output using these images must be numbers in the proper range. If a value to be output is
not an integer, it will be rounded to the nearest integer before being sent as a binary value.

Image
Spécifier Meaning
B Outputs a value as a single 8-bit byte. The value must be in the
range of 0 thru 255. If the value to be output is out of range, the
value MOD 256 is output. _
:W Outputs a value as two 8-bit bytes comprising a 16-bit word. The
most significant byte of the word is output first, followed by the
least significant byte. The value to be output must be in the range
of —32 768 to +32 767. Negative numbers are output in 16-bit 2’s
complement form. If the value to be output is out of range and
positive, 32 767 is output. If the value is out of range and nega-
tive, —32 768 is output.
Example $tatement Bit Pattern Output
HE 01111111
B AR 00000011

00000000 00000011
1 11111111 11111111

UETHEG "k

Note that specifying a binary image does not automatically suppress the end-of-line sequence after the
last byte is output. Therefore, in the examples just given, the bit pattern shown is output followed by a

carriage-rethrn/line-feed.

Formatted I/O Operations

End-of-Line Sequence Images

These image specifiers control the output of end-of-line sequences. An end-of-line sequence is one or
more characters that is normally output after the last item in an output list, and/or a signal on an interface
wire concurrent with the last byte output. Exactly which characters or signal is used depends upon the
programming of the interface responsible for the output. Part I'V of this manual covers this and all other
interface-dependent details. If your program does not change the end-of-line sequence in the interface,
the default is a 2-character sequence; a carriage-return followed by a line-feed. The following images do not
alter the end-of-line sequence. They simply control whether or not it is output.

Image
Specifier Meaning

/ Causes the output of an end-of-line sequence. Often used for skip-
ping lines in a printout.

Suppresses the output of the final end-of-line sequence. This
specifier is frequently used with binary image specifiers to prevent
the destination device from interpreting the end-of-line characters
as binary data.

The ¢‘/’’ may be placed anywhere in the image list and may have a number before it to indicate how many
EOL (end-of-line) sequences are desired. The ‘‘#’’ must be the first item in an image list and can only be
specified once. Note also that the ‘‘#’’ only suppresses the EOL sequence that would ordinarily occur after
the last item in the output list. It does not suppress any imbedded EOL sequences caused by the *‘/*’ specifier.

A typical use of the ‘‘#’’ image is to output one byte, and only one byte. The following statement does this:
OUTPUT 6 USING “‘#,B”’ ; X

This statement outputs the binary representation of X with no carriage-return, line-feed, or any other

potentially unwanted bit patterns.
A typical use of the ‘‘/”’ image is shown by the statement:
OUTPUT 701 USING “‘K,4/,K”" ; A$,B$

If the destination is a printer, A$ is printed, followed by four blank lines, then B$ is printed. If A$=‘"HI"’
and B$=*JOE’’, the character sequence output looks like this:

H|lI|cr|If|cr|1f|crjlfjcr| | J|O|E]cr|lIf

19

20 Formatted 1/0 Operations

Formatted ENTER ' .
Using ENTER statements with image specifiers gives you a high degree of control in two areas:
1. Accurately describing to the computer what the incoming data looks like and what should be done with
it.
2. Precisely specifying what condition(s) constitutes the end point of an entry to a variable and the end
point of the ENTER statement itself.

This dlscusslon deals with data formatting images first, then presents the terminator images. The HP-85 uses
an ENTER i image when some form of the ENTER USING statement is encountered. There are two forms of
this statement

1. 10 IMAGE <enter image>
20 ENTER ds USING 10 ; <enter list>
2. ENTER ds USING <enter image> ; <enter list>

The examples above show the general forms of the ENTER USING statement Here are some specific
examples: |

10 IMAGE 2(A) K
20 IMAGE 5D,2X,3De

60 ENTER 4 USING 10 ; A$,B$,X

70 ENTER 711 USING 20 ; I

80 ENTER 9 USING “‘#,B"" ; A(1),A(2)

90 ENTER S2 USING “‘%,8A,/,K” ; Q$,R$
100 ENTER 712 USING I$; N$,A

The generali forms use the same type symbols which were used to represent the OUTPUT statement. These
are ‘‘ds”’ fo} “‘device selector”’, ‘‘<enter image>>"" for the list of image specifiers, and ‘‘<enter list>"" for
the list of vairiables to be entered. As with simple ENTER statements, the enter list must contain either string
or numeric \;'ariables. You can’t enter into a constant.

i
Data Images
The image sbecifiers in this group are used to tell the computer what to do with the incoming data stream. The
basic choices are:
1. Use cljaracters to build a numeric variable,
2. Place ¢haracters into a string variable.

3. Input bytes as binary values.

4. Skip over a number of characters.

Formatted I/O Operations 21

’ Numeric Image Specifiers

These specifiers are used to control the input of numeric characters, including digits, sign, exponent, and

punctuation.
Image
Specifier Meaning

D) These specifiers all do the same thing. They tell the computer to

zZ accept one character to be used in building a numeric quantity. The

* { incoming characters do not have to follow the specified format, there

. just has to be the right number of characters. The six different

S specifiers are provided so that your program can document the ex-

M) pected format of the characters, and so that ENTER and OUTPUT
statements can share the same IMAGE statement, if desired.

E Tells the computer to accept five characters to be used for building a
number. The five characters do not have to be exponent information,
but they can be.

€ Same as “‘E’’, except the computer accepts four characters to be used
in building a number.

C This specifier also tells the computer to accept one character to be

. used in building a numeric quantity. However, if a ““C’’ is present
anywhere in a number’s image, all commas will be ignored while the
number is being entered. Without this specifier, a comma would end
the entry of a numeric quantity.

K Tells the computer to enter a string or numeric variable using free-
field format (explained in Section 2).

R These specifiers are used with the OUTPUT statement to provide a

P } European radix point and digit separator. However, these images are
NOT permitted for an ENTER statement. If you need to enter num-
bers in European format, you can use the CONVERT statement (co-
vered later in this Section) to change the number into American for-
mat.

22 Formatted I/O Operations

String Image Specifiers

These specifiers are used to enter characters into string variables.

Image
Spgciﬁer Meaning
A Tells the computer to enter one string character.
K Tells the computer to enter a string or numeric variable using free-
field format (explained in Section 2).

Some exanjiples are in order. Suppose the following character sequence is received by the computer:

1({2{3|4/H}E|L|L|[O|ecr{lif

Any of the following ENTER statements can be used to enter a numeric variable followed by a string
variable:

ENTER 720 USING “4D,5A”; X,Y$
ENTER 720 USING “Z.DD,5A”; X,Y$
ENTER 720 USING “¢,K”; X,Y$

Notice that {any numeric image that accepts four characters will properly enter the *1234”’. String data can be
entered with an “‘nA’’ image if n (number of characters) is known, or with a ‘‘K’’ if the number of characters
is unknown,

Suppose instead that the incoming data was:

11,{2|3|4{H|E|L|L|[O]ecr|lf

The ENTEﬁ image would now have to include a ‘‘C”’ for the entire ‘1234’’ to be entered. For example:
\

ENTEiR 720 USING “C4D,K”; X,Y$
ENTER 720 USING “DDDDC,5A”; X,Y$
|

Notice thaﬂ the ““C*’ does not have to appear at the same place in the image as the comma does in the
incoming data. However, the comma is counted as a character.

Formatted I/O Operations 23

Binary Image Specifiers

These specifiers are used to enter data that is received in binary format.

Image
Specifier Meaning

B Tells the computer to enter one byte of binary data and enter its
equivalent decimal value into a numeric variable.

W Tells the computer to enter two bytes of binary data to be used in
building a 16-bit, 2’s complement binary word. The equivalent deci-
mal value of the resulting word is entered into a numeric variable. The
first byte entered is used as the most-significant byte of the word. .

Skipping Unwanted Characters

These specifiers can be used with incoming numeric or string data to skip over any characters not wanted for
the input.

Image
Specifier Meaning
X Tells the computer to skip over one character.
/ Tells the computer to skip to a line-feed. Thus, after the variable has
been satisfied, the computer ‘‘throws away’’ incoming characters
until a line-feed is received.

The “X” specifier should only be used when you have a good understanding of the structure of the incoming
data, but can very useful in formatting operations. For example, suppose that text is being entered from a
remote computer that sends a line number at the beginning of every string. You know that the line number
information always appears in the first 8 characters of each string, and you don’t want these line numbers in
your data. The following format could be used to strip off the line numbers:

ENTER 720 USING “‘8X,K’’ ; A$

The “/” specifier is used to demand a line-feed field terminator before going on to the next variable. To see
the effect of this specifier, assume that the incoming data is as follows:

112y 3| H

—

If| B} Y| Ejcr| If

24 Formatted 1/O Operations

Using the statement:

ENTER 720 USING “3D,K”” ; X,Y$
causes X to get the value 123 and Y$ becomes ‘‘HI’’. However, if the statement:
ENTER 720 USING ‘‘3D,/,K’’ ; X,Y$

is used, theh X gets the value 123 and Y$ becomes ‘“BYE’’. The *‘/>’ specifier caused the computer to skip
all characte;rs after X was entered until it saw the line-feed. Then the entry into Y$ began with the first

character aﬁter the line-feed. Without the “‘/*’ specifier, the entry into Y$ began as soon as the **3D"’ field
was exhausted.

Eliminatiing the Line-feed Requirement

The ENTER statement must ‘‘see’’ a line-feed character at the end of the incoming data before the program
can go on to the next statement. If there is no line-feed character at the end of the data, the computer will be
“hung up”% waiting for one. If your incoming data does not have a line-feed at the end, you can get the
ENTER smiement working properly by using an image specifier.

Im:ﬁge
Specifier Meaning
Eliminates the requirement for a line-feed to terminate the ENTER

statement. When this specifier is present, the ENTER statement ter-

minates as soon as the last variable in the statement has been satisfied.

When the ““#*’ specifier is used for this purpose, it must be listed as the first specifier in the image list. For

example: |
|

ENTEP 3 USING “#,K’ ; A$
ENTER 720 USING *‘#,4D,6D"" ; X,Y

The first example statement shows an entry into a string variable using free-field format with the line-feed
requiremenﬂ removed. This statement terminates when the string is full. The second example shows a
formatted et try into numeric variables with the line-feed requirement removed. This statement terminates
after inputting ten characters.

Formatted I/O Operations 25

Advanced Use of Terminator Images

The ENTER image specifiers discussed in the preceding sections are sufficient to handle the great majority of
requirements. However, there are some special situations that demand an even greater amount of flexibility.
Most of these special cases involve the EOI line on the HP-IB. The following discussion is probably of no
concern to most programmers. If you are one of those who must consider the EOI line, or if you have an
unusual problem with line-feeds, then read carefully. This is the most complex part of the ‘‘Beginner’s
Guide’’.

Field and Statement Terminators

The purpose of an ENTER statement is to read a ‘‘record’’. To the programmer, a record is a logical
grouping of data items. To the computer, a record is an incoming stream of data ended with a record
terminator. Since the ENTER statement is ended when the record terminator is read, this manual refers to the
record terminator as a ‘‘statement terminator’’. If there is a requirement for a statement terminator in effect,
the ENTER statement does not end until that terminator is received. (The action is slightly different when
using buffers. These are covered in Section 8.) If no terminator image is specified, the default statement
terminator is a line-feed character. To allow a carriage-return/line-feed sequence as a statement terminator,
the I/O ROM ignores a carriage-return if it is immediately followed by a line-feed.

An incoming record often contains multiple *‘fields’’. A field is the group of characters used to determine the
input to a variable in the ENTER list. For example, an ENTER statement used to input a list of names and
ages might look like this:

ENTER 720 ; N$,A

This statement reads a record containing a name and an age. This record has two fields. The first is a string
field (the name), and the second is a numeric field (the age). A properly specified ENTER statement places
the string field in N$ and the numeric field in A.

It is not generally necessary to specify any terminator images to get the ENTER statement to perform
properly. The system has built-in field terminators and a default statement terminator which are sufficient for
most common applications. These normal terminators are:

e A string field ends when the string is full (check your DIM statements), the character count from an image
field is exhausted, or a line-feed is received.

e A numeric field ends when any non-numeric character (except a space) is encountered or the character count
from an image field is exhausted.

e The ENTER statement ends upon receipt of a line-feed character or a carriage-return/line-feed sequence.
This can be the same line-feed that satisfied the last field in the ENTER list.

Given these normal terminating conditions, the ENTER statement mentioned previously properly separates
the name field and the age field in two cases. One case is when there is a line-feed separating the string field
from the numeric field. The other case is when the string field is always of fixed length and N§ is dimen-
sioned to that length.

26 Formatted I/0O Operations \

Terminator images ‘

If the ‘“‘normal’’ terminating conditions are not ideally matched to your application, the use of terminator
images can help solve the problem. The following image specifiers apply to both field and statement
terminating conditions. Field terminators are the conditions that end the entry of data into a variable.
Statement terminators are the conditions that end the ENTER statement after the last variable is satisfied.

Image As a As a
Specifier Field Terminator Statement Terminator
Eliminates line-feed as Suppresses the requirement
a terminating condition for a line-feed terminator.
during free-field string Statement ends when last
entry. Line-feeds entered field is satisfied.
are placed into the string.
% Allows EOI as an additional Allows EOI or line-feed as
terminating condition. terminating conditions.
#% Allows EOI as an additional Specifies that an EQ| must
(or %#) terminating condition, and be received to terminate
also eliminates line-feed the statement, and line-
as a terminator during feed is not a terminator.
free-field string entry.

Whether an image specifier controls statement terminators or field terminators depends upon where it is
placed in the image. Consider the following example statement:

ENTER 720 USING “‘%,%K’’ ; X

When the terminator image is specified by itself as the first item in the image list (like the first %), it specifies
the statement terminator. When the terminator image is combined with another specifier (like the %K), it
specifies a ;&'ield terminator. The “‘#”’, ‘%", and ‘‘#9%’’ images all follow this convention.

Because thje built-in field terminators are always in effect, these special terminator images only alter the
system’s action in a few cases. Let’s look at each of these meaningful field terminating combinations
individually.

Entering Line-feeds Into a String

The image ‘‘“#K"’ causes the computer to place all incoming characters (including line-feeds) into a string
until it is full. If there is a line-feed forthcoming after the string is filled, this image is all that is necessary. If
you wish the statement to end as soon as the string is filled (without waiting for a final line-feed), the image
“#,#K” sihould be used.

Formatted I/O Operations 27

Using EOI to Terminate a String Entry

The image ‘“%K”’ allows the computer to terminate a free-field string entry with the EOI signal. However, a
device which uses EOI as its end-of-line indicator may not output any other end-of-line characters, like
line-feed. If this is the case, the proper image is ‘%,%K"’. This allows the EOI signal to also terminate the
ENTER statement. If you wish to enter line-feed characters into the string and also wish to terminate with
EOI, the image ‘‘#%K’’ can be used. This may need to be expanded to ‘‘%,#%K"’ if no line-feed is
expected to terminate the statement. The further expansion ‘‘#%,#%K’’ not only allows EOI to terminate
the ENTER statement, but requires it as the only method of terminating the statement. Fixed-field entries
can be checked for an expected EOI. For example, the image ‘‘%7A’’ inputs seven characters into a string
and expects to have an EOI signal with the seventh character. Keep in mind that there are many valid
combinations of these image specifiers. The combinations shown here are only some of the more common
ones.

Using EOI to Terminate a Numeric Entry

The image ‘%K’ allows the computer to terminate a free-field numeric entry with the EOI signal. As
mentioned in the preceding paragraph, the image ‘‘%,%K’’ may be necessary if the EOI signal is to terminate
the ENTER statement also. Fixed-field entries can be checked for an expected EOL. For example, the image
““%7D’’ inputs seven characters to build a number and expects to have an EOI signal with the seventh
character. Binary fields work in a similar manner. The image ‘“%W’’ inputs two bytes to make a 16-bit
integer and expects an EOI signal with the second byte.

There’s Always an Exception

Not all terminator problems are a proper job for terminator images. Consider again the example of a name
field (string) followed by an age field (numeric). Suppose that the names are variable in length and separated
from the age by a simple comma. If the ages came first, this would not be a problem since the comma would
end the entry to the numeric variable. But since the string data is entered first in this example, the task is a bit
trickier. You might be able to use a CON VERT statement (explained at the end of this section) to change the
comma into a line-feed and terminate the string that way. If the application does not permit the blanket
conversion of commas to line-feeds, then the entire record would have to be input into a temporary string
variable. Once the record is entered, the POS function and string subscripts could be used to extract the name
and age fields. This hypothetical situation emphasizes the importance of knowing the nature of the data you
are trying to enter. Some problems are handled by terminator images, and some are solved by different
means, but all require thought by the programmer.

28 Formatted I/O Operations

A Word of Advice About Images | ‘

Choosing the proper image for your application can often mean the difference between success and failure for
your program. However, considering the wide range of peripheral devices and the near-infinite varlety of
possible data formats, it is understandably difficult to pick just the right image. Even experienced program-
mers will go through a period of trial-and-error before finding the perfect combination of image specifiers.

There is an|old, but true, saying in the world of computers: ““You can’t program a computer to do something
that you ddn t know how to do yourself’’. This is an appropriate sentiment for formatted I/O. If you don’t
know exactly what character sequence needs to be output or what an incoming sequence contains, it is very
unlikely that you will know exactly what image specifiers to use.

Deciding on an exact character sequence for an output is simply a matter of definition. You know what data is
generated l?y your program, so all you need to do is pick a desirable form for its output. The primary caution
here is to avoid image overflow conditions.

But how ca?n a programmer determine the exact nature of incoming data when he or she can’t get it into the
computer tcl? study it? If the only tools available were the string and numeric image specifiers, this might be a
significant iproblem Fortunately, there is a way to inspect a totally unknown character sequence. Any
sequence of bytes, including potential terminators, can be entered with the “‘#,B”’ image. The values that
are printed | or displayed are the decimal equivalents of the binary value of for each byte. Admittedly, this is
not the mo§t convenient form of data to work with. However, you can use an ASCII table or the CHR$
function to ‘determine the exact character sequence which is being received. Then, knowing the exact nature
of the mcomlng data, the job of chosing image specifiers will be much simpler. The following example
program shows a typical use of this technique.

Converting I/0 Data

The final type of ‘‘formatting’’ involves changing the data characters that are entered or output. An example

cited earlier was incoming numbers in European format (with periods separating digit groups and a comma

for the radix point). There is no image available to accept this type of data directly. The periods and commas

need to be changed to other characters to give the computer what it wants. The tool for performing this kind .
of operation is the CONVERT statement. Its general form is:

CONVERT <direction> <select code> <access method> ; <string>

Formatted I/O Operations 29

The parameters are defined as follows:

<direction> Indicates whether the conversion is to take place during an ENTER (choose ‘‘IN”’) or an
OUTPUT (choose ‘‘OUT”’).

<select code> Indicates which interface will use the conversion. Note that the CON VERT operation applies
to all devices on a particular interface. A device selector is not allowed. The parameter must be an
interface select code, range 3 thru 10.

<access method> This specifies the method of accessing the conversion table. The conversion table is a
string variable, and there are two access methods. If ““PAIRS’’ is specified, the string is treated as a list
of character pairs. The second character of a pair is substituted for the first character whenever the
incoming or outgoing character matches a first character. This method is a good choice when only a few
characters need to be converted.

If “INDEX"’ is specified, the string is treated as a sequential look-up table. The numeric value of each
incoming or outgoing character is used as an index into that table. The first element in the string
corresponds to the character with a value of 0. If the value of the character to be converted is too large
for the number of characters in the string, no conversion is performed. This method is a good choice
when a large number of characters need to be converted.

<string> This represents the actual conversion table. It must be a string variable. A literal (string constant)
is not allowed.

The use of the CONVERT statement should become more clear with a few examples. First, the European
number format problem. This is a conversion for incoming data. One effective conversion is to replace a
comma with a decimal point and replace a period with a space. The statements for doing this with an interface
at select code 7 are:

A$=6".. tad
CONVERT IN 7 PAIRS ; A%

The conversion has this effect:

Data before conversion: 12.345,6
Data after conversion: 12 345.6

Since the free-field format ignores spaces within a number and recognizes a decimal point, you do not even
need an ENTER image to recognize the converted data. It is important to note that this CON'VERT statement
changes all periods to spaces and all commas to periods, whether they are part of a European number or
simply part of a block of text. Since this could have some undesired effects, it is necessary to be able to *‘turn
off”’ the conversion when it is no longer desired. The statement which cancels the conversion in this example
is:

CONVERT IN 7

Giving only the direction and interface select code, without specifying ‘‘PAIRS’’ or ‘‘INDEX’’ or any other
parameters cancels a previously selected conversion.

30 Formatted I/O Operations

Control characters, such as carriage-return or line-feed, can also be converted. The following example shows '
the statements used to convert a carriage-return to a line-feed. This conversion is needed when entering data
from a device which gives only a carriage-return, without a line-feed, as a delimiter.

A$=CHRS$(13)&CHR$(10)
CONVERT IN 7 PAIRS ; A$

Another cdnversion example is the output of EBCDIC code instead of ASCII code. EBCDIC is another form
of character representation used on certain types of computers. Since all the ASCII symbols have correspond-
ing EBCDIC symbols, it is reasonable to choose the INDEX conversion mode using a string with 128
characters.| In the following example, it is more important to understand the general process being used than
to understand what the actual EBCDIC values are. The decimal equivalents of 128 EBCDIC characters are
read from data statements and converted to string characters by the CHR$ function. The resulting look-up
table is 1n¢luded in a CONVERT statement for interface select code 7. The INDEX specifier tells the
computer to use the outgoing ASCII character as an index to find the equivalent EBCDIC character. For
example, ab ASCII right brach (decimal value 125) will convert to a CHR$(155), which is an EBCDIC right
brace.

Section 4

Error Handling

Run-time errors on the HP-85 can be trapped by using the ON ERROR statement. You may already be
familiar with the ERRN and ERRL functions which provide essential error information in a program. These
functions can be used with the I/O ROM. However, all HP-85 option ROMs share the error numbers starting
at 101. So some other tools are necessary to identify the source of an error when more than one ROM is
installed.

The I/O ROM provides two error functions in addition to the standard diagnostic capabilities of the HP-85.
These functions give the programmer the extra information necessary to isolate error conditions in a pro-
gram.

ERROM — Provides a number which identifies the option ROM which generated
the most recent error. If the most recent error was caused by the I/O
ROM, the ERROM function returns a value of 192. Note that this
function is only updated by option ROM errors. Therefore, ERROM
‘“‘remembers’’ the last option ROM error, even if the most recent
error in the system was not caused by an option ROM.

ERRSC — Provides the select code of the interface which generated the most
recent interface-dependent error. Note that this function is only up-
dated by interface-dependent errors. Therefore, ERRSC ‘‘remem-
bers’’ the last interface error, even if the most recent error in the
system was not caused by an interface.

Because other option ROMs share similar error numbers to those of the /O ROM, and because these
functions are not updated by every system error, it is important to interrogate the various error functions in
the proper order. If you are looking for I/O errors in an error recovery routine, check first for ERRN>100. If
there is a ROM error, check ERROM to find which ROM, Having determined that the I/O ROM generated
the error, check ERRN for an interface error before looking at ERRSC. Error numbers 101 and 112 will not
occur during a running program. All other errors below 123 are interface-dependent errors. Therefore, a
simple test for ERRN<123 will tell if there was an interface error.

31

32 Error Handling

The following simple program segment shows the recommended order of function checks used to isolate I/O .
errors. This segment only displays an error message. An actual error recovery routine would also include
Wi, statements ito take whatever corrective action is appropriate in your specific situation.
,;.%‘(;
!
LR VTR T
FETLEM-
-
mor- LoD wrror bere

There is a complete listing of all I/O errors, their meaning, and some debugging hints in the back of the
manual. |

34

Section 5

Why Worry About Bits?

Section Introduction

Numbers are concepts to humans. They are conceptual points on a number-line continuum that can be
associated with visual images, sounds, and tactile sensations. Most humans are trained to think in base 10. In
contrast to this, numbers are electronic patterns of ones and zeros to a computer. The computer performs
many of its operations in base 2. Most significant to I/O applications is the fact that these electronic patterns
of ones and zeros can be used directly as control signals in other electronic devices.

Some I/O operations treat groups of bits as characters or values, a concept which most programmers learn
early. The ASCII character set is an example of this. On the other hand, I/O operations often involve
handling bits on an individual basis. This delving into base 2 occurs often enough that a programmer entering
the area of I/O and process control is well advised to become familiar with bit patterns and binary operations.

This section of the manual gives a review of the basic concepts of base 2, alternate base representation, and
logical operators. The following two sections present the binary and alternate base functions available from
the I/O ROM.

Review of Base 2

Before looking at base 2, it is helpful to take a careful look at the familiar base 10. The number one hundred
twenty five is represented as follows:

125
The digits have a place value corresponding to powers of ten. The representation above really means:
1X102+2x10'+5x10°

The concept of place value also exists in base 2. The difference being that powers of two are represented
instead of powers of ten. The number one hundred twenty five is represented as:

1111101

Base 2 uses only the digits ‘‘1’’ and ‘‘0”’; a 1 indicates that a place value is included, while a 0 indicates that
a place value is not used in the value. Therefore, the binary representation shown above means:

264+254+24+23+22+20

This is the same as: 64+32+16+ 8+ 4+ 1

35

36 Why Worry About Bits?

The term bit comes from the words ‘‘binary digit’’. A bitis a single digit in base 2 that must be either a 1 or a

0. The grouping of 8 bits together is in such common usage for character representation, internal storage, and

interfacing that it has been given a special name — a byte. The term byte refers to 8 bits processed as a
unit.

Notice in both the previous examples that the right-most digit represents the *‘Oth’’ power of the base.
Because of this, bit patterns are usually numbered starting at Bit 0, instead of Bit 1. By doing this, the bit

number and the power of two it represents are the same. The following table shows the bit positions in a byte
and their corresponding values.

$it Position: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Meaning: 27 26 25 24 28 22 21 20
Value: 128 64 32 16 8 4 2 1

Examples: 130 in base 10 is 10000010 in base 2
3 in base 10 is 00000011 in base 2
25 in base 10 is 00011001 in base 2

The term word is also widely used in computer applications. A ‘‘word’’ is usually the number of bits that can
be handled in one operation by the internal architecture of the computer. Although the HP-85 has an 8-bit

internal architecture, it also has operations defined for 16-bit and floating point numbers. Therefore, 16-bit
integers are%often referred to as ‘‘words’’ in the HP-85 because the system can handle them as a basic data
unit. Anoth;ér characteristic of a word in the HP-85 is that 2’s complement representation is used. 2’s
complement representation is a method of storing either positive or negative numbers in a word. It works like
this:

Positive numbers: If bit 15 is 0, then the word is a positive number represented in normal binary form.

Negative numbers: If bit 15 is 1, then the word is a negative number represented in 2’s complement form.
To find the absolute value of a negative number, invert all the bits and add 1.

Problem: What is the value of 11111111 11110000 ?

Solution: Bit 15 tells that this is a negative number.
Inverting al(the bits gives: 00000000 00001111
Adding 1 refults in: 00000000 00010000

So the value of the given bit pattern is —16.

Why Worry About Bits? 37

Review of Alternate Representations

When text contains values represented in more than one base, it is extremely important to distinguish
between the concepts of value and representation. Consider the number one hundred. The value is the
number of beans in a jar of one hundred beans. The representation in base 10 is the digit *“1”’ followed by
two zeros. The value one hundred can also be represented as ‘*64’” in base 16, as ‘01100100’ in base 2, and
as ‘10’ in base 100.

The representation of a number is merely the characters used to communicate the number’s value. Numbers
are often represented in bases other than 10 when the use of an alternate base more clearly communicates the
number’s value. For example, suppose that up to 16 small pumps and valves are controlled by a single 16-bit
word from the HP-85. If the control pattern were represented in base 10, it could be very difficult to -
understand the number in terms of pumps and valves. However, suppose the number is represented in base 2,
further defined so that the most-significant byte is pumps and the least-significant byte is valves. The base 2
representation ‘00100000 10000000’ clearly shows one pump on and one valve open. That same value is
‘8320’ in base 10. How quickly does ‘‘8320’’ communicate to you that one pump is on and one valve is
open?

The problem with using base 10 to represent a binary number is that one base 10 digit does not represent an
integral number of bits. A base 10 pattern does not readily reflect which bits are *“1>’ and which are ‘0",
The problem with using base 2 is that there are simply too many characters to read and write. To circumvent
these problems, persons who work at the bit and byte level in computers commonly use base 8 or base 16 to
represent binary numbers. These bases have place values directly related to powers of two, making it easy to
trace bits with a little practice. They also provide representations that are three and four times more compact
than binary, reducing the number of characters needed to a more manageable small group. For example, an
entire byte is never more than 2 characters in base 16.

Base 8, known as ‘‘octal’’, uses one octal digit for three binary digits. Base 16, known as ‘‘hex’’ (short for
hexidecimal), uses one hex digit for four binary digits. The following tables show the decimal (base 10),
binary (base 2), octal (base 8), and hex (base 16) representations for the numbers 0 thru 16.

Decimal | Binary | Octal Decimal | Binary | Hex
0 000 0 0 0000 0
1 001 1 1 0001 1
2 010 2 2 0010 2
3 011 3 3 0011 3
4 100 4 4 0100 4
5 101 5 5 0101 5
6 110 6 6 0110 6
7 111 7 7 0111 7
8 1 000 10 8 1000 8
9 1 001 11 9 1001 9
10 1 010 12 10 1010 A
11 1 011 13 11 1011 B
12 1 100 14 12 1100 C
13 1 101 15 13 1101 D
14 1110 16 14 1110 E
15 1 111 17 15 1111 F
16 10 000 20 16 1 0000 | 10

38 Why Worry About Bits?

Notice that the Arabic numeral system (designed for base 10) does not have any single-character symbols to
represent quantities above nine. Single-character representation of all quantities less than the base value is
essential tothe concept of place value. Therefore, base 16 representation ‘“borrows’’ the characters A thru F
to represenf values from 10 thru 16. The following examples help to illustrate the way that octal and hex -
numbers usé bit groupings to represent binary values.

Octai 1 2 5 3 6 0 0 7 0 2 0 1 2 0 2

Binary: 01010101 11110000 00111000 10000001 10000010
= ; 000t 10000010

Hex: 5 5 F 0 3 8 8 1 8 2

Review of Logical Operations

In this discﬁssion, “‘logical operations’’ refers to operations from Boolean algebra, such as AND and OR.
The outstariding I/O feature of these operations is that they can modify individual bits without affecting
surrounding: bits. In this respect, they can be contrasted to the arithmetic operations, such as addition and
subtraction, Addition and subtraction generate carries and borrows that can propagate through an entire
word, changing the state of numerous bits many places away from the bit where the arithmetic was per-
formed. Altjhough this is exactly what is desired for numerical quantities, many of the bytes and words used

inI/O are nd)t numerical quantities. Consider the previous example about 16 pumps and valves. The carry bits
generated by an addition to such a word could literally destroy the hydralic system being controlled. When
bits are useé;l as individual control elements, the programmer must have access to tools that allow individual
control of bits. The specific tools available with the HP-85 are presented in Section 6. This section mérely
reviews the action of the common logical operators.

The operat()rs AND, OR, NOT, and EXOR are available in the standard language of the HP-85. These
operators treat an entire variable as one entity. A value of “‘0’* is considered *‘false’’, while any other value
is consideréd ““true’’. Although these operators perform the same Boolean function as the binary logical
operators, tiley do not operate on individual bits. The binary logical operators available with the /O ROM
work on a i)it-by-bit basis across an entire word. Without these binary tools, isolating an individual bit

requires an involved combination of tests, branches, and arithmetic operators.

The simples;t logical operation is the complement operation. When binary data is complemented, all the 1°s
are changed to 0’s, and all the 0’s are changed to 1’s. This operation is also known as *‘1’s complement’’, or

“‘inversion’’. The Boolean notation for this operation is a horizontal bar drawn over the variable. The truth
table is as follows:

n—dO}
O»—t|:>|

Why Worry About Bits? 39

When used on an entire byte, the complement operator inverts each bit individually.

Binary value of A: 10011101
Binary complement of A: 01100010

The other logical operators combine two inputs to create a result. Let’s look at the AND operator first. A
binary AND produces a ‘‘1’’ in the result only if both inputs are ‘‘1°*. The Boolean notation for this operation
is A, although you may also see the symbol * used. The truth table for AND is as follows:

- - O O|>
- O = Oolm
- O O O|>

The important thing to notice is that the result is 0 when A is 0, while the result is equal to B when A is 1.
Because of this, a binary AND is a convenient method for clearing selected bits. For example, assume that
you wanted to clear the two lowest bits in a byte without disturbing the other bits. This can be done by
ANDing the byte with an appropriate mask.

Original byte: 10011101
Byte ANDed: 11111100
Result: 10011100

This operation not only preserves the state of the top six bits, but also clears the bottom two bits no matter
what their original state. That saves alot of testing and branching.

The next operator is the binary OR, most correctly called the ‘‘inclusive OR’’. In English this means: you can
have pie OR ice cream for desert, and it is possible to have both at the same time. To the computer this means
that the result bit is ‘‘1’> when either input bit is ‘“1°’. The Boolean notation for an inclusive OR is v,
although you may also see the symbol + used. The inclusive OR truth table is:

| AvB

- - O o>
- O = 0O|l

\
0
1
1
1

40 Why Worry About Bits?

The imporfant thing to notice is that the result is 1 when A is 1, while the result equals B when A is 0.
Because of this, the inclusive OR is a convenient method for setting selected bits. For example, assume you
wanted to set the two lowest bits in a byte without disturbing the other bits. This can be done by ORing the
byte with an appropriate mask.

Original byte: 10011101
Byte ORed: 00000011
Result: 10011111

This operatijon sets the lower two bits no matter what their original state and also preserves the state of the top
six Pits.

The final operator is the binary EXOR, or “‘exclusive OR”’. In English this means: you can take the plane OR
the train to ;Chicago, but you can’t do both at the same time. To the computer this means that the result bit is
“1’” if a single input bit is *“1°’, but the result bit is *‘0’” if both input bits are the same. The Boolean notation '
for an excld;sive OR is +, although you may see the symbol @ used. The exclusive OR truth table is:

| AvB

o 200>
—o-=0Ow
o= —=0O ¢

The importajtnt thing to notice is that the result is equal to B when A is 0, while the result is the complement of
B when A 1s L. Because of this, the exclusive OR is a convenient method for inverting selected bits. For
example, assume that you wanted to invert the lower two bits of a byte without disturbing the rest of the bits.

Original byte: 10011110
Byte EXORed: 00000011
Result: ‘ 10011101

This operation complements the lower two bits no matter what their original value and leaves the top six bits
unchanged.

Section 6
Binary Functions

Section Introduction

As explained in the previous section, I/O programming often involves the use of binary functions and
bit-level operations. The I/O ROM provides several useful tools to assist you with these tasks. These binary
functions are often used when manipulating status and control registers in the interface cards. They may also
be very handy for processing I/O data in device control applications. This section explains the binary
functions available on the HP-85.

It is important to remember that all the binary functions provided by the /O ROM operate on 16-bit words.
For example, the binary complement of zero is 11111111 11111111 (base 2); the range of bits that can be
tested is O thru 15; and the range of values for binary arguments is —32 768 thru 32 767. There is no problem
using these these functions to operate on binary values with less than 16 bits. The unused high-order bits are
simply assumed to be zero.

In the following explanations, the term ‘‘integer’’ is used frequently to identify the arguments for many of
the functions. To the I/O ROM, an integer is a 16-bit binary number with a range of —32 768 thru 32 767.
This contrasts to the definition of an integer given in the Owner’s Manual, where it states that an integer is a
5-digit number with a range of —99 999 thru 99 999. Please keep this distinction in mind to avoid confusion
about the term ‘‘integer”’.

If you are not familiar with the binary operators, such as AND and EXOR, study the review in Section 5
before continuing with this section.

41

42 Binary Functions

The Binary AND Function

The binary AND function performs a bit-by-bit AND using two integers as arguments and producing an

integer result. Here are some examples of properly syntaxed binary AND functions:

X=BINAND(Y,15)
A=C+BINAND(D,E)
PRINT BINAND(255,Z—32)

Notice thatl‘:he arguments must be enclosed in parentheses and separated by a comma. The arguments may be

numeric constants, numeric variables, numeric expressions, or any combination. The arguments are assumed

to be in base 10 representation. If you wish to express the arguments in an other base, refer to Section 7. Each
bit of the résult is computed according to the following truth table:

First Second Function
Argument | Argument Resuit
0 0 0
0 1 0
1 0 0
1 1 1

The Binary Inclusive OR Function

The binaryiinclusive OR function performs a bit-by-bit inclusive OR using two integers as arguments and
producing i‘in integer result. Here are some examples of properly syntaxed binary inclusive OR functions:

X=BINIOR(Y, 15)
A=CHBINIOR(D,E)
PRINT BINIOR(255,Z32)

Notice that }the arguments must be enclosed in parentheses and separated by a comma. The arguments may be
numeric coﬁilstants, numeric variables, numeric expressions, or any combination. The arguments are assumed
to bein bas% 10 representation. If you wish to express the arguments in an other base, refer to Section 7. Each
bit of the rq‘sult is computed according to the following truth table:

First Second Function
Argument | Argument Result
0 0 0
0 1 1
1 0 1
1 1 1

Binary Functions 43

The Binary Exclusive OR Function

The binary exclusive OR function performs a bit-by-bit exclusive OR using two integers as arguments and
producing an integer result. Here are some examples of properly syntaxed binary exclusive OR functions:

X=BINEOR(Y,15)
A=C+BINEOR(D,E)
PRINT BINEOR(255,Z~32)

Notice that the arguments must be enclosed in parentheses and separated by a comma. The arguments may be
numeric constants, numeric variables, numeric expressions, or any combination. The arguments are assumed
to be in base 10 representation. If you wish to express the arguments in an other base, refer to Section 7. Each
bit of the result is computed according to the following truth table:

First Second Function
Argument | Argument Result
0] 0 0
0 1 1
1 0 1
1 1 0

The Binary Complement Function

The binary complement function performs a bit-by-bit complement of an integer argument, producing an
integer result. Here are some examples of properly syntaxed binary complement functions:

A=BINCMP(B)
X=BINCMP(Y-2)
PRINT BINCMP(N*8)

Notice that the argument is enclosed in parentheses. The argument may be a numeric constant, a numeric
variable, a numeric expression, or any combination. The argument is assumed to be in base 10 representa-
tion. If you wish to express the argument in an other base, refer to Section 7. Each bit of the result is
computed according to the following truth table:

Argument | Result
0 ‘ 1

1 0]

You should keep in mind that the binary complement function operates on a full 16-bit word. This may, in
some cases, give an unexpected result if you are dealing exclusively with 8-bit bytes. The 16-bit complement
of an 8-bit byte is always a negative number. You can generate 8-bit complements by using the binary
exclusive OR function. An exclusive OR with 255 complements the lower 8 bits and leaves the upper 8 bits as
zeros. This technique prevents the unintentional generation of negative values when dealing with single

bytes.

44 Binary Functions

The Bit Test Function .

The bit test function is used to indicate whether a specific bit in an integer is set (1) or clear (0). The general
form for tHe bit test instruction is:

BIT(integer,bit number)

The intege;r argument must be the first expression and the two expressions must be separated by a comma.
The bit nujmber must be in the range 0 thru 15, where O is the least-significant bit and 15 is the most-
significant‘bit. Either argument may be a numeric constant, a numeric variable, a numeric expression, or any
combinati(j)n. Here are some examples of properly syntaxed bit test functions:

A=BIT(B,3)
X=BIT(Y,Z-1)
IF BIT(N,1) THEN GOSUB 220

The bit tesd function is very useful in decision making and branching. It is easily used with the IF statement to
direct prog;kam flow based on the state of individual bits. The function returns a O (false) if the specified bit is
0 and returins a | (true) if the specified bit is 1.

Section 7
Base Conversion Functions

Section Introduction

A programmer who works at the bit and byte level soon develops a preference for the base in which bytes and

words are represented. In some cases, base 2 offers the clearest display of a bit pattern. Base 8 built a large
following in the days when computers could not easily handle alphabetic characters as numeric input. Base
16 has gained much popularity in recent years because most computers use a word length that is an integral
multiple of 4, and modern systems have no trouble converting the symbols A thru F used in hex.

To accomodate these various preferences, your HP-85 provides conversion functions that allow the input and
output of integers using any of the alternate representations mentioned above. The base conversion functions
have certain characteristics in common:

e All conversions go from base 10 to an alternate base or from an alternate base to base 10. You can’t
convert directly from one alternate base to another without passing through base 10.

o The base 10 side of the conversion is always a numeric quantity, while the alternate base side is always
a string.

e Because the alternate base representations are string data, they can be input, output, compared, stored,
and manipulated to some degree. However, the string representations cannot be used in arithmetic
operations.

o All arguments for the base conversion functions must be in the range of 16-bit integers. This includes
the alternate representations as well as the base 10 values.

45

46 Base Conversion Functions

Conversions From Base 10 to an Alternate Base .

These funeitions use a base 10 numeric quantity as an argument and produce a string as a result. The primary
use of these functions is the printing, display, or output of data in an alternate base, although other
applicatioﬁs are possible. The argument for the function may be a numeric constant, numeric variable,
numeric expression, or any combination. The argument must be in the range of —32 768 thru 32 767.
Functions are available to convert to base 2, base 8, or base 16.

From B%se 10 to Base 2

This is thei “Decimal to Binary String’’ function. It converts an integer argument to a string of 16 ones and
Zeros. The% string is the base 2 representation of the integer argument. If the argument is out of range and
positive, the function yields ““0111111111111111”’. If the argument is out of range and negative, the
function yijelds **1000000000000000°’. The following are examples of properly syntaxed expressions:

PRINT DTB$(X)
A$=DTB$(N*2)
OUTPUT 701;DTB$(32+Y)
DISP DTB$(255)

From B%se 10 to Base 8

This is thei “‘Decimal to Octal String’’ function. It converts an integer argument to a 6-character string. The

string is tde octal representation of the integer argument. If the argument is out of range and positive, the
function yields ‘077777, If the argument is out of range and negative, the function yields **100000°’. The
following are examples of properly syntaxed expressions:

PRINT DTO$(X)
A$=DTO$(N*2)
OUTPUT 701;DTO$(32-Y)
DISP DTO$(255)

From Bjase 10 to. Base 16

This is thei *‘Decimal to Hex String’’ function. It converts an integer argument to a 4-character string. The
string is tﬂe hex (hexidecimal) representation of the integer argument. If the argument is out of range and
positive, t}he function yields ‘*7FFF’’. If the function is out of range and negative, the function yields
‘8000, Thc following are examples of properly syntaxed expressions:

PRINT DTHS$(X)
A$=DTH$(N*2)
OUTPUT 701;DTH$(32-Y)
DISP DTHS$(255)

Base Conversion Functions 47

‘ Conversions From an Alternate Base to Base 10

These functions use a string as an argument and produce a numeric result. The primary use of these functions
is the input of data in an alternate base, although other applications are possible. The argument for the
function may be a string constant (literal), string variable, string expression, or any combination. The
argument must represent a value in the range of 16-bit integers. Functions are available to convert from base
2, base 8, or base 16.

From Base 2 to Base 10

This is the *‘Binary to Decimal”” function. The argument is a string which is the binary representation of an
integer. The argument cannot have more than 16 characters, and only the numerals ‘‘1°* and *‘0’’ are valid.
The result of the function is the base 10 value of the number represented by the argument. Since the function
result is numeric, it can be used in arithmetic operations or numeric functions. The following are examples of
properly syntaxed expressions: '

PRINT BTD(**100101"")
X=BTD(A$)
Y=255—BTD(N$)

From Base 8 to Base 10

. This is the “‘Octal to Decimal’’ function. The argument is a string which is the octal representation of an
integer. The argument cannot have more than 6 characters. Only the numerals *0”’ thru *“7’’ are valid. If all
six characters are used, the most-significant character can only be a *“1’’ or a *‘0”. The result of the function
is the base 10 value of the number represented by the argument. Since the function result is numeric, it can be
used in arithmetic operations or numeric functions. The following are examples of properly syntaxed expres-
sions:

PRINT OTD(*‘371"")
X=0TD(A$)
Y=255—OTD(N$)

From Base 16 to Base 10

This is the ‘‘Hex to Decimal’’ function. The argument is a string which is the hex representation of an
integer. The argument cannot have more than 4 characters. Only the numerals ‘‘0’’ thru *“9°’ and the letters
““A” thru “‘F”’ are valid. The result of the function is the base 10 value of the number represented by the
argument. Since the function result is numeric, it can be used in arithmetic operations or numeric functions.

The following are examples of properly syntaxed expressions:

PRINT HTD(*‘1F4"’)
X=HTD(A$)

. © Y=255—-HTD(NS$)

48 Base Conversion Functions

Converting From One Alternate Base to Another '

Conversionis between alternate representations are easily done by nesting two conversion functions. The
following short program is an example of this technique. It inputs a hex representation and displays the
corresponding binary representation,

Mambye e ®

ira ey owm U OTEECHTOORE

Part III
Advanced I/O Operatlons

lntroduc:tioh

_read fithe -

the programmmg 1nformat10n of 1nterest to yo

50

Section 8

Specialized Transfers

Section Introduction

This section deals with data transfers as they are implemented by the TRANSFER statement. The basic
purpose of the TRANSFER statement is to provide a flexible tool for moving data into and out of the
computer. The key word here is flexibility.

This flexibility allows you to better match the computer’s speed to that of the peripheral it is communicating
with. Take the case of a very slow device, such as a 10 character-per-second printer. It takes such a printer 8
seconds to print an 80 character line, but our computer could send those same 80 characters in less than .1
second. If the computer is forced to wait on the printer, then the computer is losing 7.9 seconds of
computation time out of every 8 seconds! The computer’s power can obviously be increased by gaining back
that 7.9 seconds. Let’s see how.

The following diagrams contrast the default ‘‘handshake’’ method used by OUTPUT and ENTER with the
“‘interrupt’’ method of TRANSFER. When the computer executes the OUTPUT statement (for example), it
is forced to handshake each character of the data list until all the data has been sent. Only then is the
computer free to execute the next program statement, about 8 seconds later. On the other hand, the interrupt
TRANSFER statement sets up some special pointers to the data and enables the printer interface to interrupt
the computer. Then the computer is free to execute the next program line, about 10 milliseconds later!
(Enabling an interrupt is like hanging up a telephone receiver : the telephone is now able to “‘interrupt’” you
by ringing whenever someone calls.)

The computer continues program execution until the printer is ready for another character. The printer
interface interrupts the computer from whatever it was doing, and the computer then fetches the next
character, updates its pointers, checks to see if all data has been sent, then continues on with what it was
doing. If all the data has now been sent, the computer disables anymore interrupts from the interface (like
taking the telephone receiver off the hook — no more rings) before continuing on with the program.

51

52 Specialized Transfers

Handshake Method

Interrupt Method

Program
execution

/|

Program Program
execution execution
; OUTPQT TRANSFER preparations
. preparations (enable interrupts, etc.)
1 > This is where
! 1 the computer
! loses its 7.9 Program
| seconds .
4_’_\‘2<; printer execution
! ready?

Printer Present
interface next
interrupts > character
computer to printer

Present
next
character
to printer
° Program
execution
A |
N All
— “‘<0 __ characters Printer Present
N sent? interface next
interrupts > chargcter
computer l\ to printer

If the two rﬁethods are looked at in a broader sense, it is possible to see the real difference : the handshake
method is a ilinear, or sequential operation, while the interrupt method is a parallel, or overlap operation.

Consider thé following diagram:

Specialized Transfers 53

Sequential

8 seconds
OUTPUT
to printer
via
program handshake

| ! program
execution | | execution
is halted . | }

resumes
N d
program _ ' (program
execution : ! [. execution
|

Overlap

8 seconds
TRANSFER
to printer
via
interrup

|
|
TRANSFIZR i ‘ TRANSFER .
execute | has completed
I
|

|
|
T
|

|

|

program
execution

program
execution
never halts

The sequential method effectively PAUSES the program for the duration of the OUTPUT operation, while
the overlap method continues both with program execution and TRANSFER operation.

An interesting possibility brought about by this overlap is that of multiple, simultaneous 1/O operations.
Suppose that the next program statement after the TRANSFER statement is another TRANSFER to a
different device (a large-screen CRT monitor, for instance)? Then three things are happening at once : the
program is being executed, the printer is printing, and the external CRT monitor is displaying new charac-

ters.

54 Specialized Transfers

The followmg diagram illustrates some of the power of overlapped I/O operations made possible with .
TRANSFER. (Please note that this is for ““interrupt’” TRANSFER only, as explained later.)

select/code 3
output TRANSFER

|

E
device 701 |
input TRANSFER |
selecticode 6 |
output TRANSFER |
; |

!

[

|

i

| program
lexecution

Program exécution begins at time to, and some time later an output TRANSFER to select code 6 is initiated
(time ti). At time t2 an input TRANSFER from HP-IB device 701 is started, and at time t3 another output
TRANSFER is started, this time to select code 3. By now, three TRANSFERS and program execution are all
going on at pnce. At time t4, the input TRANSFER terminates, and the two output TRANSFER:s finish at ts

and te. This ioverlap capability demonstrates some of the flexibility of system design made possible with the
TRANSFER statement.

There is anJ‘ther side to the TRANSFER statements flexibility: speed. Certain operations are ineffective or
impossible 4t slow or medium speeds, and require instead a high-speed transfer. Take the case where it is
desired to 4nalyze a signal’s waveform by using an HP3437A voltmeter. This voltmeter is capable of
producing ab%-digit voltage reading up to 3600 times per second (which is a transfer rate of about 25 000
characters pé:r second! The HP-85 is not quite that fast however; its transfer rate is closer to 20 000 characters
per second).i

\
The followihg diagram illustrates the effect of sampling a signal at slow, medium, and high rates of speed
(sample poihts are represented by dots):

Specialized Transfers 55

Slow

Slow
(Reconstructed)

Medium
Medium
(Reconstructed)

Fast
/
Fast
(Reconstructed)

The slow sample rate provides at best an inaccurate picture of the signal, while the high sample rate comes
much closer to approximating the actual shape of the signal.

So where does TRANSFER fit into this picture? Consider the ENTER and OUTPUT statements with their
extensive formatting and conversion capabilities as being like a Rolls-Royce automobile with electric win-
dows, television, liquor cabinet, automatic transmission, and other accessories.

56 Specialized Transfers

A fast-handshake TRANSFER is then comparable to a Formula I race car, with no windows, manual

transmission, one seat, a spine-jolting ride, and that is capable of speeds over 300 kilometers per hour. Its
main objective is performance.

The fast- hqndshake TRANSFER delivers the highest data transfer rate possible with the HP-85A computer.
When a fast-handshake TRANSFER operation is in progress, ALL other activities stop. Even the computer’s
RESET key is disabled and will have no effect until the TRANSFER completes.

s As with thqj Formula I race car, you pay a price for performance.

The Caire and Feeding of Buffers

A buffer i 1s‘a section of read/write memory set aside for the purpose of temporary data storage. It is used to
either 1npu§ data, output data, or both by means of the TRANSFER statement. There is no formatting or data
conversmn‘done by TRANSFER, so what is in the buffer is what is sent to the peripheral device. The same
holds true for data being input by TRANSFER; it is placed in the buffer exactly as it is received from the
device.

To illustratie how OUTPUT, ENTER, conversion, formatting, IOBUFFER, and TRANSFER work together
consider the following diagram.

OUTPUT Z$ USING 10; A$ (X), |, 1.23

| CONVERT
Progra output
variables Formatting Out o TRANSFER Pi):it::;?ela |
ang data (USING) conversion (Filn) (Empty)
A$(X),1,1.23 wers
IOBUFFER
Z$
i CONVERT input
\Zgg:m _ Formatting In "TRANSFER | [rxxx |
A(1),X,B$ (USING) conversion (Empty) (Filny coo
table Exteinal

Peripheral

. ENTER Z$ USING 20; A (I), X, B$

Specialized Transfers 57

The OUTPUT statement takes data from program variables and does any necessary formatting while placing
that data into its ASCII representation. Then, if an output conversion is in effect, the ASCII characters are
converted accordingly and placed into the IOBUFFER at the position specified by the fill pointer. The
IOBUFFER is full when the fill pointer is at the end of the buffer (the string Z$ in this case). You should be
aware that a default OUTPUT operation to a buffer places a carriage-return and a line-feed at the end of the
data in the buffer.

The output TRANSFER takes characters from the IOBUFFER at the position specified by the empty pointer.
These characters are sent to the specified interface and its associated peripheral. This is done either by
interrupt or fast-handshake as specified by the programmer. When the TRANSFER completes, the inter-
face’s end-of-line character sequence is sent.

The input TRANSFER accepts characters from the specified interface (and its associated peripheral) and
places them into the IOBUFFER at the position specified by the fill pointer. Again, this is done either by
interrupt or fast-handshake as specified by the programmer.

The ENTER statement takes characters from the IOBUFFER at the position specified by the empty pointer. If
an input conversion is in effect, these characters are converted accordingly, formatted as necessary, and
changed into the proper internal representation for the program variables. If you are entering data from an
active buffer, errors can be avoided by using the form ENTER Z$ USING ‘‘#,#K’’;AS.

This form of ENTER removes the requirement for statement and variable terminators, which may not be in
the buffer yet.

The Pointers

When a string variable is first designated as an IOBUFFER (by executing an IOBUFFER statement), its
dimensioned length is effectively reduced by 8 characters. This is to provide room for 4 “‘pointers.”’ There is
a fill pointer, an empty pointer, an active-out select code, and an active-in select code.

The fill pointer first equals zero (0). This pointer always contains the same value as that returned by the LEN
function for the string variable. Placing a character into the buffer goes as follows: 1) increment the fill
pointer, 2) store the character. This operation is automatically handled by the OUTPUT (fill pointer equals
LEN function) statement and also by any string variable assignment operations such as Z$=7Z$&A$. You do
not normally need to assign values to the fill pointer.

The empty pointer first equals one (1). Taking a character from the buffer goes as follows: 1) read the
character, 2) increment the empty pointer. This operation is performed automatically by the ENTER state-

ment.

58 Specialized Transfers

A buffer is full when the fill pointer equals the string’s dimensioned length minus 8. A string with a .
dimension@d length of 8 would not be a very useful buffer, as it would be full and empty at the same time,
without any data being placed in it at all! Any OUTPUT operation to a full buffer will result in an error.

A buffer 1q‘ empty when the empty pointer equals the fill pointer plus one. This has no relationship to the
dlmens10néd length of the string. When a buffer is emptled the fill pointer is reset back to 0 and the empty
pointer is reset back to 1. This is exactly the same effect as executing the IOBUFFER statement, except that
the IOBUHFER statement also initializes (destroys) conversion table pomters

Buffer Activity

When a T&ANSFER statement is executed, the spe01f1ed buffer is then an active buffer. The buffer may be
actlve-out\ active-in, or both, depending upon the direction(s) of the transfer(s). The buffer is assigned an
active-in jelect code when an input TRANSFER statement is executed. An active-out select code is
assigned when'an output TRANSFER statement is executed. For example when the following interrupt

transfer to $elect code 6 is executed —
!
‘ TRANSFER Z$ TO 6 INTR

the active-out select code equals 6.
A buffer is made inactive when the TRANSFER completes. This is a direction-specific inactive state; that is,

a buffer maiy be active-out but inactive-in, or vice-versa. When an input TRANSFER completes, the buffer’s
active-in sélect code is set to zero (0). Similarly, when an output TRANSFER completes, the buffer’s

active-out gelect code is set to zero (0).

Buffer Status and Control

The four bhffer pointers can be checked by means of the STATUS statement. The four I/O buffer status
registers ard: as follows:

Status Default Register Statement used to read
| Register Value Function register value of buffer Z$.
| Buffer empty
SRO 1 pointer STATUS 2$,0;TO
Buffer fill
SR1 0 pointer STATUS Z$,1;T1
Active-in
SR2 0 select code STATUS Z2$,2;T2
Active-out
SR3 0 select code STATUS 28$,3;T3

Specialized Transfers 59

. These registers may be read at any time on an active or inactive buffer, but attempting to read the status of a
non-buffer string variable (that is, if no IOBUFFER statement has been executed for that string variable)
results in an ERROR. :

An example of using buffer status registers to control program flow follows. In the exarﬁple, a string variable
is dimensioned to 88 characters (to allow for 80 characters of data after becoming a buffer) and declared as an
I/O buffer. Data is OUTPUT to the buffer, a TRANSFER out to an HP-IB printer is initiated, then the
buffer’s active-out select code is checked to determine when the TRANSFER has completed. The program
ends when the transfer corhpletes.

The variable TO shows how many characters have been taken from the buffer. T1 shows how many characters
total are in the buffer, and T3 indicates select code activity.

For another example, assume device X is to send three numeric values followed by a carriage-return,
line-feed. The following program displays the buffer registers until the TRANSFER completes. An ENTER
is then executed to take the values out of the buffer, which are then printed.

If device X is a very slow device, you could “watch” characters come into the buffer by means of variable T1.
‘ TO is not altered until the ENTER is executed, and T2 reflects the FRANSFER statement activity. When
the TRANSFER is initiated, T2 = 7; when the TRANSFER completes, T2 =0.

60 Specialized Transfers

The buffeq empty pointer and the buffer fill pointer can be assigned new values by using the CONTROL ‘
statement. | This gives you the capability of sending the same data over and over again without having to
re-compute the data, for example. The following table shows these registers and how they are accessed:

Control Default Register Statement used to write
Register Value Function register value of buffer Z$
Buffer empty)
CRo 1 pointer CONTROL 2$,0;V0
Buffer fill
CR1 0 pointer CONTROL 2$,1;V1

These bufﬁer registers may be written to at any time, but attempting to write to a control register of a

non-buffer| string variable (that is, if no IOBUFFER statement has been executed for the string variable)
results in an ERROR.

In the follq}wing example, 360 values are computed for SIN(X) to represent one complete cycle of a sine
wave. The$e values are OUTPUT to the buffer Z$ and subsequently sent to device X, a digital-to-analog
converter, by a fast-handshake TRANSFER.

When the f‘RANSFER completes (T2=0), the buffer empty pointer is automatically reset to 1, the fill pointer
is set equal‘ to 360, and the TRANSFER restarted. This continues indefinitely until the PAUSE key is pressed
to stop theiprogram. The effect of this program is to produce a near-continuous sine wave from device X.
(Details of jdevice X are purposefully left out here to avoid confusing the issue.)

Lines IOAd merely set up the buffer and place the computer in degrees mode. Lines 50-70 fill the buffer with
the 8-bit vip.lue for each of 360 degrees (one complete sine wave), and line 80 starts the fast-handshake
TRANSF¢R. Line 90 is executed when the TRANSFER is complete. The buffer fill pointer is set back to
360 (so it ldoks full), and the TRANSFER is restarted.

By exercising control over the buffer empty and fill pointer, it is possible to retransmit data, transmit any
portion of tLhe data in the buffer, to write data into any section of the buffer, read data out of any section of the

buffer, etci These operations may not be ones that you need to use in your application, but the flexibility they
provide you could make feasible certain I/O operations not possible through any other means.

Specialized Transfers 61

Data TRANSFERS

The TRANSFER statement has been mentioned several times up to this point. In combination with the
IOBUFFER, it provides you with unmatched flexibility in tailoring and optimizing a program to exchange
data with one or more peripheral devices. The diagram below shows the relationship of the TRANSFER with
the IOBUFFER (or more simply, buffer), conversion tables, and program variables.

OUTPUT Z$ USING 10; A$ (X), 1, 1.23

Program COh(l)VtERT output
variables Formatting u TRANSFER | External
and data (USING) ™ » Peripheral
A$(X),1,1.23 conversion (Fill (Empty)
- table
IOBUFFER
Z$
CONVERT input
Program . In :
variables |- Formatting | < JRANSFER [nxxx |
A(1).X,B$ (USING) | conversion | (Empty) (Fill coo
table External
Peripheral

ENTER Z$ USING 20; A (1), X, B$

The TRANSFER itself is the easiest section of the entire picture to understand. Simply stated, an output
TRANSFER takes characters, or bytes, out of the buffer from the position specified by the buffer empty
pointer and sends them to the external peripheral. Conversely, the input TRANSFER takes characters from
the external peripheral and places them in the buffer at the position specified by the buffer fill pointer.

Output TRANSFER

For an output TRANSFER, you merely specify whether an interrupt or a fast-handshake TRANSFER is to be
performed. For example, to specify an interrupt output TRANSFER —

TRANSFER Z$ TO 713 INTR

- N

buffer device selector interrupt
(or interface select code)

62 Specialized Transfers

The o_peratﬁon of an interrupt output TRANSFER is as follows:

When the statement is executed, the interface involved (in this case, an HP-IB Interface at select code
7) is automatically enabled to interrupt! the computer when ready to accept a new character.

Theréafter, each time the interface interrupts, the computer temporarily suspends program execution
long ienough to move ‘the next character from the buffer to the interface. (It is then the interface’s
responsibility to see that the new character is properly sent to the peripheral.)

Whep the buffer is finally emptied (described in “The Care and Feeding of Buffers”), the computer
disa&les (or turns off) further interrupts from the interface. The TRANSFER is now essentially
comélete, although the interface may still be sending out the specified end-of-line character sequence
(norxhally a carriage-return/ line-feed: see the appropriate Interface Programming section).

When the TRANSFER is terminated, a check is made for a user-defined end-of-transfer branch. If one
is deﬁned then the branch is taken upon completion of the current program line. This is explalned more
thorohghly in the section ‘‘End-of-Line Branching.”’

A fast-handshake output TRANSFER is specified as —

TRANSFER Z$ TO 706 FHS

buffer) device selector fast-handshake

(or interface select code)

The operation of a fast-handshake output TRANSFER is si gnificantly‘ different:

e The computer suspends program execution and dedicates itself to the task of moving all the characters

in the buffer to the interface. The computer totally devotes itself to this task until the buffer is emptied.
No otiher interrupts are allowed, not even a RESET! This means that once a fast-handshake TRANSFER
begirfs the computer will see it through to completion, and all other operations are ignored until that
time..

When the buffer is empty, the TRANSFER is essentially finished. (The interface may still be in the
proce%s of sending the end-of-line character sequence.) If a user-defined end-of-transfer branch is
speciﬁj’ied, the branch is taken upon completion of the current program line.

1 This is a hardware-level interrupt, and is distinct from the software-level end-of-line branch discussed in Section 9.

Specialized Transfers 63

. Input TRANSFER

The input TRANSFER is essentially the same as the output TRANSFER, except that data is being moved
from the external peripheral to the computer. However, in addition to specifying whether an interrupt or
fast-handshake TRANSFER is to be performed, you may also specify the terminating condition(s) for the
TRANSFER. The terminating conditions for both interrupt and fast-handshake TRANSFER s are:

e COUNT — the number of characters or bytes of data to be input before the TRANSFER is considered
complete. Use COUNT when the number of characters or bytes being sent from the peripheral device is
known.

e EOI — an interface-specific terminating condition. In the case of the HP-IB Interface, some devices
set the EOI control line when sending the last byte of data indicating end-of-data. This terminates the
TRANSFER if EOI is specified.

e Default termination — a full buffer termination. An input TRANSFER terminates with the first occurr-
ence of any specified terminating condition or a full buffer. (Obviously, if there is no room left in the
IOBUFFER, the TRANSFER cannot continue.) If no other terminating condition has been specified, an
input TRANSFER will terminate when the IOBUFFER becomes full.

The terminating conditions for interrupt TRANSFER’s only are:

¢ DELIM — the numeric value of the character or byte of data that indicates all data has been sent. Use

DELIM when the number of characters or bytes being sent from the peripheral device is either not

‘ known or varies for some reason. The peripheral device should not send the DELIM character as part of
the data being sent, or else the TRANSFER will be terminated prematurely!

e Interface termination — an interface specific termination. Certain interfaces allow you to specify
additional terminating conditions by writing to the interface control registers. These conditions may be
either receipt of user-specified characters or line status, so consult the appropriate interface program-
ming section to determine which if any, conditions your interface supports.

Programming with TRANSFERS

Every TRANSFER operation requires an IOBUFFER, which in turn requires a dimensioned string variable of
adequate size. After executing the IOBUFFER statement, any CONVERT statement(s) for that buffer may
be executed. This is because IOBUFFER initializes all the buffer pointers, including those to any conversion

tables.

If there is any necessary interface initialization to do, it may be done anytime before executing the TRANS-
FER. If your program uses end-of-line branching (ON EOT : see the ‘‘End-of-Line Branching’’ section), the
appropriate statement(s) should be executed before the TRANSFER statement.

64 Specialized Transfers

An input TRANSFER may be executed at any point after the setup sequence described above. An output
TRANSFER however, requires data in the buffer before anything can be sent. Therefore, an OUTPUT or a

string assigpment operation needs to be performed before attempting to execute the output TRANSFER.

It has been said that either an OUTPUT or a string assignment operation needs to be performed before
executing an output TRANSFER so that there is data available in the buffer. This is not entirely true. Nor is it
necessary tb have all the data in the buffer before initiating an output interrupt TRANSFER. Also, it is not
necessary tio wait for an input interrupt TRANSFER to complete before reading data from the buffer.
(Fast-hands;hake TRANSFERSs are totally sequential operations and do not apply to the following discussion.)

If the extefmal device is sufficiently slower than the computational speed of the HP-85, it is possible to
initiate an (:ﬁutput TRANSFER with the buffer only partially filled. Then, as more data becomes available to
send to the }device, the new data can be OUTPUT (for example) to the buffer while the TRANSFER is still in
progress. ﬂhis process can go on indefinitely until either: 1) all data has been sent or, 2) the buffer is filled
(then the ué,er’s program must wait for more buffer space) or, 3) the buffer is emptied (then the TRANSFER
terminates qjand it must be restarted).

Case 1 aboxjie is straightforward and needs no explanation. Case 2 is determined by the buffer status, and the
program can wait for more buffer space by monitoring buffer status (with the STATUS statement). The
occurrence jof case 3 indicates that the peripheral device is actually faster than the HP-85 in this instance.
(This may be due to excessive computation being performed or some other circumstance causing a delay in
the programj.) An end-of-line branch or a status check on the buffer indicates a TRANSFER completion, and
the decisioni to continue the TRANSFER can be made at that time. The following example program illustrates
how these oionditions might be dealt with:

i A T RANS

Section 9

End-of-Line Branching

Section Introduction

The purpose of this introduction is to give you an understanding of end-of-line program branches. If you have
a knowledge of this facility already, skip the background information and move on to ‘‘Using End-of-Line
Branching.’’ That section deals with the actual programming aspects of using end-of-line branches.

Some Background on Interrupts

If you’ve never heard the term ‘ ‘interrupt’’ with regards to a computer before, then a simple way to think of it
is like a telephone ringing while you are working. It is a means of diverting your attention from whatever it is
you are doing. ‘‘Servicing’’ an interrupt is similar to the act of going over to answer the ringing telephone.
When the telephone business is completed, you typically resume the *‘interrupted’’ activity where you left
off.

If you have a switch that can disconnect the telephone bell (so it can’t ring), then you can ‘‘disable’’ or
‘“‘enable”’ that interrupt by the setting of the switch. The computer has essentially the same facility.

In addition, the computer has two types of interrupts to deal with: low-level, or hardware interrupts; and
high-level, or software interrupts. In general, the hardware interrupt is used by the computer for its own
purposes, and is transparent to the user. Hardware interrupts make possible such things as the INTR type of
TRANSFER, where program execution and I/O are concurrent operations. However, external (and internal)
events can also trigger hardware interrupts that require specialized service routines to deal with them.
Because there is such a wide variety of interrupt causes possible, it is necessary to make provisions for the
programmer to custom tailor service routines for those interrupts specific to his system. This provision is the

software interrupt, or end-of-line branch.
Imagine a *‘ghost’’ IF (event) THEN GOSUB (line#) statement appended to the end of each program line,

like the ones below:

FRIMT "R

sy] ot B IF (event=true) THEM GIELIE (routine)

sy B TF (event=true) THEM GIIELIE (routine)

In effect, at the end of each program line, a check is made for the ‘‘event,”” which may be an ERROR, a
hardware interrup't, a select code timeout, a TRANSFER completion, a special function key-press, or a timer
timeout. (End-of-line service for three of the above events is already provided for in the HP-85 mainframe:
special function keys and timers.) When one of the events occurs, a special portion of the program can be

executed to deal with that event.

65

66 End-of-Line Branching

The programmer also has the ability to disable or enable the end-of-line service facility for each event, as will
be shown in the next section on programming for end-of-line branches. .

End-of-Line Branch Programming

Introduétion

This sectlon shows you how to program service routines to deal with end-of-line branches for /O related
events. At the end of this section is a sub-section entitled ‘‘Interactions and Permutations.’’ The discussion
there deals thh problems and questions you may encounter such as ‘‘GOSUB vs GOTO.”’

Interface Interrupts

Each interqulce (HP-IB, RS-232C, BCD, etc.) has a control register that allows you to specify an interrupting
condition. Thls is control register CR1, the Interrupt Mask register. When you set a bit in that register, you
enable the interface to interrupt the computer when the event corresponding to that bit occurs. The interrupt
event is deJ:rmlned by referring to the programming section for the particular interface. For example, the
HP-IB Inteﬁace provides for an interrupt on SRQ, or Service Request. The SRQ interrupt is enabled by
setting bit 3 of control register CR1. To enable the SRQ interrupt for the HP-IB Interface at select code 7,
execute

ENABLE INTR7;8

This is equi;Valent to

CONTROL 7,1;8

\
and both ste*tements set bit 3 of control register CR1 on select code 7.

Suppose (fo;r simplicity) that only one device is connected to the HP-IB Interface, and that device asserts

SRQ only to indicate it is ready to send a numeric value to the computer. The statement we’1l use to read this
valueis
ENTER 701;V1

This is the extent of our example service routine, which will take the form of a subroutine in the program.

Once the cdmputer has read the new value from the device, it must again enable the SRQ interrupt so that
another value can be read when the device is again ready. The service routine begins to take shape:

End-of-Line Branching 67

Note that the ENABLE and the RETURN are on the same program line. There are some occasions where this
is a necessary practice, and this is discussed under ‘‘Interactions and Permutations.”’

It is necessary to specify where the service routine for an event is, and also whether the routine is a
subroutine (GOSUB) or just a program segment (GOTO). This is accomplished by the ON INTR statement.
Note that the computer must know where to go and what to do before an interrupt occurs, or else it will be

forced to ignore it. Therefore, the ON INTR statement should be executed before the ENABLE INTR
statement, as shown in the example below.

Line 10 specifies the location (line 1000) and type (GOSUB, not GOTO) of the service routine for select code
7. Line 20 initializes the HP 3455A voltmeter to take readings whenever it is triggered. The LOCAL
statement of line 40 allows the DVM to be triggered manually, and the ENABLE statement enables the
interface for SRQ interrupt (bit 3 of the interrupt mask is set). Lines 70 and 80 merely display an increment-
ing counter and the last reading taken from the DVM.

Each time an SRQ is received, program execution of lines 70 and 80 is suspended, and the subroutine at line
1000 is executed. The ENTER is performed, which takes a new value for V1. The SRQ interrupt condition is
again enabled in line 1030, and the RETURN allows the program display loop to resume. However, the value
for V1 that is now displayed is the new value just read by the service routine.

What would happen if the ENABLE INTR on line 1030 were removed?

Simple. The first SRQ would be serviced as described above, and the program loop then resumed. However,
no more SRQ interrupts would be detected, even if the HP-IB device were frantically sending the SRQ
message to the interface! Without that bit set in CR1, the interface ignores the event — regardless of its
importance.

To disable or cancel the end-of-line branch condition set up by ON INTR, simply execute an OFF INTR

statement for the appropriate select code. No more branches will be taken until another ON INTR statement
is executed.

68 End-of-Line Branching

Timeouts

Itis possible for an external device to exhibit symptoms of ‘‘narcolepsy’’ (going to sleep unpredictably) from
time to timg Of course, being an electronic device, this * ‘falling asleep”’ is generally caused by an electronic
malfunctlon or some other unusual condition, such as being switched off. It is not as important to focus here
on the posslble causes of device ‘‘failure’’ so much as the possible effects.

When a de}vice fails, for whatever reason, the immediate effect on the computer is that it is no longer
“‘handshaking”’ data to or from the computer. (Handshaking is a means of reliably transferring data between
two deviceé The sender makes data available, signals that data is ready, and the receiver accepts the data and
signals thati it has taken the data. This protocol is called ‘‘handshake.’’) If an ENTER, SEND or OUTPUT
operation 1$ in progress, a loss of handshake means no data can be transferred and the operation cannot
complete. If the operation does not complete, the program ‘‘hangs’’ until the operator becomes aware that
something has gone wrong. This is unacceptable for most 1/O systems, and expecially those where unat-
tended opefatlon is frequent.

The SET T;IMEOUT statement gives you the capability of establishing a maximum time period for the
computer tq}) wait on an interface to handshake data. If an interface exceeds the SET TIMEOUT limit
specified, two alternative courses of action may be selected. One method simply aborts the I/O operation in
progress and continues program execution at the next line. The other method executes a timeout service
routine aftet the I/O operation is aborted.

The followﬂjng example shows the simpler form of SET TIMEOUT, where no timeout service routine is

specified:

If device 7@6 stops responding to handshake before the OUTPUT operation is complete, then after 10
seconds lin{: 30 will be executed. (Line 30 would also be executed if the QUTPUT were successful,
obviously.) ‘

A more sophisticated method for dealing with a timeout condition condition is to execute a timeout service
|

routine wheh an I/O operation is aborted due to a timeout. A separate service routine may be programmed for

each select code to deal with the specific device or conditions for that select code. The ON TIMEQUT

|
statement provides this capability, as shown below:

38 OH TIMEDU
Al OW TIMEDOT

2

End-of-Line Branching 69

Obviously, in a dedicated system, more significant action could be taken than simply printing a message,
aborting the operation with a RESET, and returning to the program. For example, a flag could be set by the
timeout routine which would be checked before attempting an I/O operation to that select code. This flag
might indicate printer out of paper or tape reader at end of tape, which would make I/O to such a device a
useless endeavor. It might also be the only means available of determining when an operation has completed.
The following example shows how a flag might be used:

When a timeout occurs, the flag F1 is set equal to 1, and the IF statement of line 50 causes the ENTER
statement of line 60 to be skipped. The loop is exited and the program continues. (In the example, only a
PRINT and STOP are shown for simplicity.) In this case, the cause for the timeout is not device failure, but
rather the end of data to be sent.

As with ON INTR, there is a corresponding disable statement for timeout end-of-line branches. The OFF
TIMEOUT statement can be used to cancel end-of-line service for a specified interface timeout. The SET
TIMEOUT statement with a time limit of O can also be used, which sets an (almost) infinite timeout limit for
the interface. For more information regarding syntax rules, refer to the alphabetical syntax listing section of
this manual.

70 End-of-Line Branching

TRANSFER Terminations

There are two means of determining when a TRANSFER operation has completed. Both are straightforward,
but using an end-of-line branch service routine allows the greatest flexibility of program design.

As is mentioned in ‘‘The Care and Feeding of Buffers,”’ buffer status registers SR3 and SR4 indicate input
and outpuq activity, respectively. When the appropriate register becomes equal to 0, that TRANSFER has
terminated%. However, this requires re-checking the status register until the TRANSFER terminates, and so
inhibits prégram execution. If there is other work to be done, a fairly convoluted program logic will be the
result of tr}j'ing to monitor TRANSFER status and getting the other work done. There is a simpler way.

When an ON EOT (On End Of Transfer) statement is executed, an end-of-line branch is enabled for
TRANSFEk termination for the specified interface. Then you can program the operations necessary to deal
with the TRANSFER termination into the ON EOT service routine. These operations might include placing
new values|into the buffer and re-initiating the TRANSFER (for output) or taking values from the buffer and
placing thekn into program variables (for input).

To illustraﬁ}e how the ON EOT statement might appear in a program, consider the following example. A
voltmeter (‘HP 3437A) is programmed to take a reading every .9 seconds. An interrupt TRANSFER is set up
for 100 reahings of seven characters each, plus a final carriage-return/line-feed and the 8 extra bytes needed
for pointers.

When the ’JI‘RANSFER completes, the service routine at line 1000 is executed which saves the readings and
initiates a new TRANSFER.

End-of-Line Branching 71

The program logic associated with the TRANSFER and the EOT service routine is quite simple (shaded
program lines). The extra programming shown is included as one example of how the EOT service might be
used for data-save operations to tape. The EOT service routine might just as well have sent the collected data
to a remote central computer (with another TRANSFER, of course!)

End-of-transfer service can be cancelled by execution of an OFF EOT statement for the desired select code.
For further details about these statements, refer to the alphabetical syntax listing in this manual.

Interactions and Permutations

This section is written so that you may be able to better predict operation of those programs that utilize

end-of-line branching.

End-of-line service occurs in a specific order. That is, if more than one end-of-line branch is pending at the
end of a program line, one of the branches will be taken before the other. The following table lists the types
of end-of-line branches and the select codes, and gives the precedence order for combinations of branch type

and select code.

Branch Precedence Table

Select Code
Branch Type 3 4 5 6 7 8 9 10
ON ERROR 1
ON INTR 2 3 4 5 6 7 8 9
ON TIMEOUT 10 {11 |12 |13 | 14 |15 | 16 | 17
ON EOT 18 |19 20 |21 |22 |23 |24 | 25
ON KEY 26
ON TIMER . 27

72 End-of-Line Branching

For example, a pending ON INTR branch for select code 5 would be taken before a pending ON INTR branch ‘
for select code 9. Any pending ON EOT branch would be taken after any pending ON TIMEOUT branch,
regardless of select codes.

You should take note that the term precedence is used here, not priority. This means that when the computer
is executing one service routine, other service routines are not implicitly locked out. (In a priority system,
any service routine having a lower priority than the routine curently being executed will not receive control
until the c@rrent routine completes.) If two end-of-line branches are pending on the HP-85, the one having
precedencé is executed first. However, after the first line of that service routine executes, the still-pending
end-of-line branch to the second service routine is taken! '

The only Way the first routine can guarantee uninterrupted execution is to disable the other routine’s
end-of-line branch with its first line. An example will help show this:

Assume th#t while line 50 is executing, both interrupts occur. Both end-of-line branches are pending when

line 50 corﬁpletes. Select code 7’s service routine has precedence, and so line 100 is executed. Line 100

disables seﬂect code 9’s service routine, so the end-of-line branch that would have occurred is not taken. Line

190, the la&t line of the select code 7 service routine, re-enables the select code 9 service routine and when

the RETUl:QN is executed, line 200 is then executed. Note that the OFF INTR does not ‘‘eliminate’’ the .
pending ena-of-line branch — it just defers the branch until an ON INTR is executed later.

End-of-Line Branching 73

Events such as interrupts, timeouts, TRANSFER terminations and ERRORs are ‘‘remembered’’ indefinitely,
or until a RESET or STOP occurs. Therefore, once an event has occurred and remains unserviced, execution
of an ON INTR, ON TIMEOUT or ON EOT results in an immediate end-of-line branch.

The type of branch taken can affect program operation. The most predictable program execution occurs when
GOSUB end-of-line branches are taken. Use GOTO when the program is simple and only one or two
end-of-line branches are expected. One very simple example of this would be:

ON INTR 7 GOTO 9999
ENABLE INTR 7;128

These two statements direct program execution to line 9999 (presumably an END statement) when an
Interface Clear on HP-IB occurs. This kind of ‘‘bail-out’’ provision can be useful when developing certain
types of programs such as ones using keyboard masking (see Section 10). Then, when something goes wrong
you can halt the program by asserting IFC on the interface bus with another controller or a bus analyzer.

The following example is presented to show you how some of the ON event branches interact. The listing and
results are shown with a brief explanation, but you will learn more from it if you experiment on your own.
Try setting timers, timeouts, and keys up and then watch it work (or not work). Press the special function key
while the computer is waiting, then watch the displays. ‘

b diroskid mes

T ST

by ot

zet the

74 End-of-Line Branching

EEWTHTOR

Section 10

Keyboard Control

Section Introduction

In certain applications, the operation of a system could be adversely affected by a curious passerby pressing
keys which could halt or alter program execution. In other applications the system operator must have access
to certain keys, but not others.

Traditionally, the dedicated computer’s keyboard was covered by a ‘‘mask’’ of plastic, metal or wood which
covered all keys unnecessary to the operation of the system. Cut-outs were provided to allow access to those
keys the operator used to control the system. Obviously, the extra cost of designing and manufacturing such a
mask added to the cost of a dedicated system.

The HP-85 I/O ROM provides the keyboard mask in software, which — short of turning the computer
off — offers far less chance of user interference than does a mechanical mask. In addition, greater flexibility
is possible with the software masks, as is discussed in the following section.

Key Mask Programming
There are three basic modes of operation for the HP-85: halted (or idle), program execution, and keyboard

input.

In the idle mode, the computer accepts commands and is available for program modification/entry. This is
the mode that the computer normally is in when not executing a program (when first turned on, or after
executing a STOP, PAUSE, or END type statement). The idle mode is generally used for program develop-
ment or debugging, so a keyboard mask for the idle mode is not very useful and is not provided.

In the program execution mode, pressing any key other than an ON KEY defined special function key will
halt the program. A keyboard mask can be specified for four classes of keys while in the program execution
mode. These classes are:

1. RESET

2. PAUSE

3. Special Function Keys and KEYLABEL key
4

. Other keys (all remaining keys not in classes 1, 2, or 3)

Any or all four classes of keys can be masked out for the program execution mode.

75

76 Keyboard Control

In the keyboard input mode, the computer is temporarily halted awaiting operator response. This is the mode
« of operation for the INPUT statement. The four classes of key masks for the keyboard input mode are:

1. RESET

2. PAUSE

3. Special Function Keys and KEYLABEL key

4. Other keys (all remaining keys not in classes 1, 2, or 3)
The ENAB;LE KBD statement takes as a parameter the key mask desired for the appropriate operating mode.
The upper four bits of the mask parameter specify the program execution keyboard mask. The lower four bits

specify the keyboard input key mask. The bits of the mask parameter are shown below. Setting a bit enables

the corresponding key(s), while clearing a bit disables the key(s). That s, only those keys having a bit set in
the ENABLE KBD mask will respond.

Bit Decimal Operating
Number Value Mode Keys Masked
7 128 { RESET
6 64 Program PAUSE
5 32 Execution Special Function Keys and KEYLABEL
4 16 ¢ Other keys
3 8 T RESET
2 4 Keyboard PAUSE
1 2 Input Special Function Keys and KEYLABEL
0 1 * Other keys

The following example illustrates the use of the keyboard mask to disable all keys except the Special
Function Keys for program execution. The RESET, PAUSE, and Special Function Keys are masked out for
the keyboard input mode. This still allows the operator to respond to an INPUT statement, but he cannot
affect prog}am execution in that mode.

Keyboard Control 77

The operator can select the desired program section by pressing the appropriate special function key — but
only the special function keys will respond to being pressed. When the operator presses special function key
#1, the program branches to line 1000. When the INPUT statement of line 1000 is executed, the special
function keys no longer respond but the numeric keys do, allowing him to set the time as requested. When the
program continues on from the INPUT, once again all keys except special function keys are disabled.

The following example gives the operator a ten second time span in which he can PAUSE or RESET the

computer if necessary:

78

Section 11
Direct Interface Communication

Section Introduction

This section deals with the statements available to the programmer for tailoring the operations of an interface
to the specific requirements of his system.

The status of interface operations can be monitored with the STATUS statement. This status may reflect the
actual hi/low voltage level of external I/O lines or it may indicate the interface’s internal state, depending
upon which status register is being read.

The mode of operation of an interface can be directed by the CONTROL statement. The interface generally
provides automatic control of external I/O lines according to the mode selected, and also may provide for
manual override of certain of the I/O lines for custom sequences.

Checking the Status

Interface status (and also buffer status) is monitored by the STATUS statement. The STATUS statement is a
very straightforward one to use, requiring only the interface’s select code and desired register number to be
specified. The following statement obtains the value of the HP-IB interface (select code 7) identification
register, SRO:

STATUS 7,0;X

Select Register Numeric
Code Number Variable

In this case, the value returned is always 1, the identification code for an HP-IB interface. Each interface
returns a different identification code, so consult the appropriate interface programming section for specific
details.

79

80 Direct Interface Communication

The values of multiple status registers can be obtained with just one STATUS statement. Simply specify the
first register number and give many variables as necessary to obtain the status needed. For example, to read
status registers SR1 through SR6 of the HP-IB interface at select code 7:

STATUS 7,1;X1,X2,X3,X4,X5,X6

~ TN

Select Starting Returns Returns Returns Returns Returns Returns
Code Register SR1 SR2 SR3 SR4 SR5 SR6

What you do with the contents of these registers depends upon your application, needs, and type of interface.

The HP-IB interface above, for example, returns

Interrjupt Cause - SR1
HP-IB Control Lines - SR2
HP-IB Data Lines - SR3
HP-IB Address - SR4
HP-IB State - SR5

Seconary Command - SR6

for the six registers just read. Obviously the BCD Interface returns different information for those same
registers (what’s the HP-IB address of a BCD Interface??).

Most interfaces are capable of interrupting the HP-85 when a specified condition occurs, and if more than one

condition has been enabled it will be necessary to determine which interrupt occurred and caused the

end-of-line branch. The following service routine serves as an example of how STATUS would be so used:

Direct Interface Communication 81

b Mot o TE D e

for RAotive Donteol

TE88 L Bered oe b ar Ferive Listerse

Line 1010 obtains the interrupt cause from SR1 of the interface, and lines 1020-1040 analyze the register bits
for the specific cause of the end-of-line branch. Lines 1050-1090 are included to deal with possible program
errors or illegal interrupt causes. No program or machine is perfect, so try to make provisions such as the one
shown to deal with malfunctions that might occur.

Interface Control

The operating modes of an interface can generally be tailored to suit individual systems and their require-
ments. This may mean nothing more than selecting the type of interrupt conditions required to deal with
events specific to your system. Or, it may mean selecting a handshake mode suitable for the device being
connected to the interface. In any case, the CONTROL statement provides the means of programming the
interface’s control registers.

There are three primary items of inerest in a general discussion about CONTROL and interface control
registers. The first is the interface interrupt mask. This mask is CR1 for the HP-IB Interface. Therefore, the
following two statements have identical effects for the HP-IB Interface (select code 7):

ENABLE INTR 7;8
and
CONTROL 7,1;8

Both statements enable an SRQ interrupt condition for the interface. They can be used interchangeably,
however, the ENABLE INTR statement better documents the effects it will have on program execution.

The second item of interest is that of external I/O lines. In general, you can set or clear interface-specific
control lines by writing to control register CR2 of the desired interface (however, consult the individual
interface programming sections for exact details). Both of the following statements write to HP-IB control
register CR2, the HP-IB Control Lines register (select code 7):

ASSERT 7,32
and
CONTROL 7,2;32

82 Direct Interface Communication

Both statements set the HP-IB SRQ (Service Request) control line TRUE, but there is a slight difference in
the manner that they do so. The CONTROL statement is not immediately executed if there is an I/O operation
already in progress (an interrupt TRANSFER, for example). The I/O in progress first completes, then the
CONTROL operation is performed. This is in contrast to the ASSERT statement, which immediately sets the

control line (SRQ in this case) regardless of any I/O in progress. In either case, exercise due caution when
writing to the interface control line register: the consequences of an improper control operation may be an
interface or device malfunction. (In fact, to assert SRQ you should really use the REQUEST statement:
proper bus protocol is ensured.)

Note: Improper or invalid control line operation may cause loss of data or device malfunctions.

The third item of general interest in control register programming is the end-of-line (EOL) character
sequence sent by the interface. This character sequence is essentially an end-of-record delimiter, which in the
days of punched cards signalled that an entire card had been read or punched. For all interfaces, this EOL
sequence defaults to carriage-return/line-feed, and is sent after every PRINT or OUTPUT operation (unless
inhibited by the programmer). The EOL sequence is also sent for the <‘/>> (slash) IMAGE specifier or for the
““END” keyword of the SEND statement.

It is sometimes necessary to tailor the EOL sequence to suit the needs of a particular device. For instance,
you might need double spacing on a printer (carriage-return/double line-feed) or carriage-return only for a
CRT terminal that performs an automatic line-feed when a carriage-return is received.

The HP-IB Interface provides EOL sequence programmability with control registers CR16-CR23. Up to

seven EOL characters can be sent if so desired, and are specified by writing the character values and EOL
character count to those control registers. For example, to program a double line-feed EOL sequence with
EOI (END or Identify) set on the last line-feed?, the following CONTROL statement could be used:

CONTROL 7,16;128+3,13,10,10

/7 \N\

Enable OL Carriage Line-Feeds
EOI Count Return
of 3

In summary, the control registers provide the flexibility required to tailor interface operation to your specific
system requirements. They should be used with caution, however, so that you don’t get any unpleasant
‘“‘surprises.” Study the appropriate interface programming section of this manual to determine which
capabilities you need and how to implement them. It may be necessary to experiment a bit before the system
works as you want it to, but even the ‘‘pros’’ have to do that. Good luck.

1 You should note that it is not possible to send EOI with the last data byte of an OUTPUT or SEND operation, but it is possible with PRINT, DISP,
or TRANSFER.

~ Interface Programming Tec

84

Section 12

Using the HP-IB Interface

Section Introduction

This part is organized into three major sections:

1. A Basic Introduction to the HP-IB (for the novice).
2. HP-IB Operations (for the intermediate).
3. HP-IB for the Specialist.

It is not necessary for you to read all sections to use the HP-IB interface. In fact, if you just wish to use a
printer for program output and listings, you needn’t read beyond the next paragraph.

Let’s assume you have a printer and an interface. To use your printer, you must;

1. First install the interface WITH THE POWER OFF! [See the installation procedure in the Interface
Installation Note].
2. Plug the cable connector into the connector on your printer.

3. Write down your printer’s address (it’s in your printer manual).

4. Then write down your interface select code (factory set to 7).
Assuming your printer address is 01, and your interface select code is 7, you turn power on and execute
FRINTER ID 7@l

Now PLIST a program, and the listing will be printed on your HP-IB printer rather than on the HP-85A
printer. Any PRINT statements in your program will now be directed to your HP-IB printer.

The procedure is similar for other output devices as well. If this information is sufficient to make your device
work, then go no further. However, if you have a more difficult problem, or if you wish to know more of the
real power of the HP-IB interface, then read on.

A Basic Introduction to the HP-IB

This section is oriented to the new owner of an HP-IB interface. The depth of coverage is minimal, and is
aimed primarily at giving the first-time user a means of understanding the ‘‘what’’ of HP-IB.

85

86 Using the HP-IE Interface

First Things First

HP-IB. The letters stand for Hewlett-Packard Interface Bus. It is Hewlett-Packard’s implementation of the
IEEE-488-1978! interface standard. The purpose of the HP-1B is to provide for mechanical, electrical,
timing, and data compatibilities between all devices adhering to the standard®. In essence, interfacing
computers to other devices has been simplified by the HP-IB. Instead of worrying about how to hook up your
devices so they can communicate, you merely have to consider what they are going to communicate. Given
that all the details of compatibility have been worked out, we can move on to understanding the general
structure of a system tied together with the HP-IB, commonly called *‘the bus.’’

General Structure of the HP-IB

Like most things one learns about, the HP-IB has a structure — a precise organization — that prevents chaos
from becoming the general rule. For conceptual purposes, the organization of the HP-IB can be compared to
that of a committee. A committee has certain ‘‘rules of order’’ that describe the manner in which business is
to be conducted. For the HP-IB, these rules of order are the IEEE-488-1978 standard.

One member, designated the ‘‘committee chairman,’” is set apart for the purpose of conducting the meetings
and organizing the agenda. The chairman is responsible for the actions and results of the committee, and
generally uses the ‘‘rules of order’’ to ensure the proper conduct of business. If, for some reason the
committee chairman cannot attend a meeting, he designates some other member to be ‘acting chairman.”’

For the HP-IB, the committee chairman is the system controller. This is generally established by a switch setting
on the interface, and cannot be changed under program control. However, it is possible to designate an ‘‘acting
chairman’’ on the HP-IB: this device is called the active controller, and may be any device capable of directing
HP-IB activities, such as a desktop computer. When the system controller is first turned on, or reset, it assumes
the role of active controller. These responsibilities may be subsequently passed to another device while the system
controller tends to other business: more than one computer can be connected to the HP-IB at the same time.

On a committee, only one person at a time may speak (this alleviates confusion somewhat) and the chairman is
responsible for ‘‘recognizing’’ appropriate members to speak, one at a time. For the HP-IB, the device designated
to ‘“‘speak’ is called the active talker, and there may be only one active talker at any time. The act of
“‘recognizing’’ or ‘‘giving the floor’’ to that device is called addressing to talk, and is performed by the active
controller. The ‘‘message’’ delivered by the active talker is called a data message, and is the primary function of
the HP-IB.

On a committee, those members present usually (?) listen, but this is not the case for the HP-IB. The active
controller selects which devices are going to listen, and commands all other devices to ignore the present data
message. A particular device is told to listen by being addressed to listen by the active controller. It is then an
active ﬁsteﬂer. Devices are told to ignore a data message by being unaddressed with an unlisten command from
the active controller.

1 Institute of Electrical and Electronics Engineers 488-1978 standard fora general -purpose interfacing bus, commonly termed the GPIB.

2 You should be aware that some devices claiming ¢ IEEE-488 compatible’’ really are not fully compatible.

Using the HP-IB Interface 87

The concept of unlisten seems at first confusing, and one might wonder why do it? Imagine a slow note-taker on
our committee, and a fast note-taker. Suppose also that the speaker is allowed to talk no faster than the slowest
note-taker. This would guarantee that everybody gets the full set of notes and misses no important information.
However, requiring all presentations to go at that slow pace certainly imposes a restriction on our committee.
Now, if the chairman knows which presentations are not important for the slow note-taker, he can direct that
person to put away his notes for those presentations. That way, the speaker and the fast note-taker can cover more
items in less time. On the HP-IB, a similar situation may exist. A printer and a flexible disk (or ‘“floppy”’) can
both be listeners, but if all the data transfers must be slow enough for the printer to keep up, saving a program on
the disk would take as long as listing the program on the printer. That would not be a very effective use of the
speed of the disk drive, certainly. Instead, by unlistening the printer, the computer can save a program as fast as
the disk can accept it.

Now that you have seen the general structure of the HP-IB, you are ready to learn about the primary function of
the bus — that of data transfers.

Data Transfers on the HP-IB

The data transfer, or data message, allows for the exchange of information between devices on the HP-IB. Our
committee conducts business by exchanging ideas and information between the speaker and those listening to his
presentation. On the HP-IB, data is transferred from the active talker to the active listeners, and this transfer
occurs at a rate determined by the slowest active listener on the bus. This restriction on the transfer rate is
necessary to ensure that no data is lost by any device designated to listen.

The technical term for the mechanism used to control the transfer rate is called handshake. Imagine, on the
committee, that the speaker must pause every time a note-taker raises his hand. When the speaker presents one
item, a slow note-taker can raise his hand to halt the speaker, while he (the note-taker) finishes jotting down that
item. Then, when he is ready, the note-taker lowers his hand and the speaker continues with the next item.

A similar mechanism is used for the HP-IB. As you might expect, the HP-IB handshake is more complex in order
to deal with many different devices and their different modes of operation. It is not necessary, however, to
understand the details of this handshake in order to use the HP-IB.

How does one address a device? Remember, this is necessary in order to designate a device to be either a talker or
a listener for a data transfer. The select code of the interface, 7 in the case of an HP-IB interface, is the first part of
a device selector. This corresponds to the street number of an apartment house, say, 315 Exray Drive. The second
part of a device selector is the device address (13, for our example) on the bus. This corresponds to the apartment
number of the person in the apartment house. To address a letter to this person, it is necessary to give both the
street address and the apartment number, like so:

315 Exray Drive Je—street address
Apartment #27 Jeapartment number

88 Using the HP-1B Interface

The complete device selector looks like this:

713

select code device address

Every device on the bus must have a different device address, or a great deal of confusion will result (as you might
intuitively expect). |

For a data transfer to occur, the active controller must:

1. Unlisten all devices (to ensure there are no ‘ ‘eavesdroppers’’).
2. Designate the talker (by addressing a device to talk).

3. Designate the listener(s) (by addressing the device(s) to listen).
4

. Indicate to all devices involved that they may begin the data transf%’er.

Fortunately, this is normally done automatically by the computer. There are exceptions to this, but excep-
|
tions are topics for more advanced discussion and are not presented here.

The computer, as the active controller, is normally involved in any dalta transfers that occur. Take the case of

the computér sending data to a printer. Suppose the message to be pr}inted is ‘‘Now is the time for all good

men.”’ The statement 1 ‘

OUTPUT 701;*“Now is the time for all good men’’

does the following:

1. Unlistens all devices.

. Designates the computer as talker (My Talk Address is sent).

2

3. Designates the printer (device #01) as listener.
4. Begins the data transfer.

The computer receives data as simply as it sends it. Assume that the computer is to take a reading from a

voltmeter, which is reading + 1.075 volts. The device address of the voltmeter is 03, so the appropriate
statement

ENTER 703;V
does the following:

1. Unlistens all devices.

o
2. Designates the computer as listener (My Listen Address is sent).

3. Designates the voltmeter (device #03) as talker.

4. Begiﬂs the data transfer.

Using the HP-IB Interface 89

Notice in both examples the computer only needs to be told what the address of the other device is — it
already knows its own address.

If transferring data were all the HP-IB did, the simplicity of hooking up devices to the computer would be the
only strong point of the bus. Its power goes far beyond that, however, as you will see in the next two
sections.

Controlling the HP-IB

Just as the committee chairman must have certain measures of control over the committee, so must the system
controller have methods of controlling the bus.

When a committee meeting has gotten out of hand for some reason (two or more members talking at once, or
a member refusing to give up the floor) the chairman must call the meeting to order, usually by pounding a
gavel. The possibility of a bus out of control exists, therefore, the system controller (and only the system
controller) has the power to assert Interface Clear. This terminates all bus activity, unaddresses all talkers
and listeners, and passes active controller responsibilities back to the system controller (if active control had
been passed previously to some other device). Interface clear is not normally used in most bus operations, but
has been provided to deal with any unusual situations that may occur.

Individual devices on the bus may be reset back to their power-on state by sending the device clear message.
The active controller can send this message to any one device or all devices at once. Device Clear can be a
quick means of re-programming a device back to its default (or power-on) parameters, and that device
generally acts as if it had just been turned on.

Passing active control has been mentioned twice, and it refers to the ability of delegating active controller
responsibilities to another device.

The analogy of designating an ‘‘acting chairman’’ in the absence of the committee chairman is appropriate.
The system controller may need to direct the activities of another HP-IB system, or to perform calculations
on data that has been gathered, or some other function that demands attention away from the bus. The
technical term for passing active control is Take Control. It is a short message sent via the bus from the
current active controller to the device receiving control which then assumes active control responsibilities.
Obviously it doesn’t make sense to pass control to a device incapable of controlling bus activities, such as a
printer.

The controller also has certain functions available that affect selected devices on the bus. It is sometimes
desirable to have two or more instruments start their operations at the same time. Suppose two voltage
readings have to be taken simultaneously at different points in a circuit under analysis. The two voltmeters
involved have to be ‘‘triggered’’ at the same time, so the controller can send the Group Execute Trigger

message to accomplish this.

Another type of control necessary in HP-IB systems is that of remote control of instruments. Normally, an
instrument such as a voltmeter has switches, dials, and buttons on the front panel which the operator adjusts

90 Using the HP-IB Interface

to set range, polarity, and function. Requiring the presence of an operator to control these settings, however,
would impose a severe restriction to the ability to automate a system. The Remote Enable message places an
instrument under remote control so it can be set up by the active bus controller.

There is still a problem with the system described above. It is possible that a casual passer-by may come
along and put an instrument back under local control of the front panel switches. This can be done with a
switch generally provided on instruments called ‘return-to-local.’’ If this happens, the computer could begin
receiving erroneous readings, so a bus message is provided to ‘‘lock out’’ the return-to-local switch. The
message is appropriately called Local Lockout. Its primary purpose is to prevent manual operation of bus
instruments when they are under remote control.

‘Naturally, there needs to be some method of returning the instruments back to manual control. This is done
by sending the Go-to-Local message. When a device receives the Go-To-Local message, any local lockout
and remote messages in effect on that device are cancelled. The device then returns to local, front-panel
control.

This completes the introduction to controller-directed activities, but one more aspect needs to be covered
before this discussion of the HP-IB is complete. Devices on the bus need some mechanism of getting the
attention of the controller when unusual circumstances develop. The next section deals with this mechanism.

Handling Requests for Service

When a dévice encounters a problem, or is ready with some other information for the controller, it needs to
be able to'signal that such a situation exists. It does this by a Service Request. An example of a need for a
service request is that of a printer out of paper. The printer has to stop printing, but it needs to indicate to the
controller that it has stopped, so that data will not be lost. The printer sends a service request to the
controller, which must then find out

~

1. th sent the request (if there are several devices on the bus)?

2. What is the problem?

The contr<z)ller can determine who sent the service request by performing a Parallel Poll'. This is like the
committeé chairman asking for those members with a pro‘b’Tém to raisé their hand. Once he determines which
members have a problem, he can ask each in turn what their problem(s) are. On the HP-IB, this process of
determiﬁing the problem is called a Serial Poll and, like the name implies, involves querying each device in
turn as toits status. The information returned by each device is dependent upon the nature of the device: a
printer may indicate out-of—paperf,»'fc'dveri'off, tape low or whatever. A voltmeter may indicate overrange,
illegal command and so on.

On one hand, the functions available with the HP-IB interface make possible a very sophisticated automated
system. On the other hand, a very simple system is possible, because all the details of electrical, timing,
mechanical, and data compatabilities have been already taken care of for you. The next section shows how an
HP-IB system might be set up, and the sequence of operations typically used to operate it.

1. Note that response to Parallel Poll is device-dependent, so it may not be possible to use your device in this manner.

Using the HP-1B Interface 91

HP-IB Operations

Introduction

The HP-IB interface provides both simple operations and complex control functions for systems ranging from
a single device plus controller to multiple devices with one or more controllers. This section is written for the
user who understands the terms and structure of the HP-IB, but who needs information on how it is used. This
is not an extensive treatment of statements and their syntax, but rather is intended to help the user understand
the sequences of operations necessary to make an HP-IB system function. Use this section to design your
program, then use the syntax reference in the back of this manual to code your program.

Turn-on and Check-out

The topic of device installation is covered in detail in the 82937A Interface Hardware and Theory manual,
and is not covered here except in general terms.

Once the interface has been installed and the system devices have been connected via the HP-IB cables, a
short routine should be run to check the status of the individual components. If you know the bus addresses of

the devices in your system, a program similar to the one below can be used.

In line 10, the status information of the 82937A interface itself is obtained, and that is printed in line 20. The
status value as set at the factory should be 1, 0, 64, n, 53. Lines 30-50 obtain and print the serial poll response byte
of the devices set to addresses 22, 03, and 13.

If you don’t know, or aren’t sure what the system device addresses are, the following program segment could

be substituted:

92 Using the HP-1B Interface

Any device present should return some value for its serial poll response, and this will show up on the
printout. Please note that the status information returned by each device is normally different. The meanings
of the device status information printed by the above routine can be found in the operating manual for each
device, and would typically be termed ‘‘Serial Poll Response Byte.”’ Different devices may have this
information in different areas of the manual, but the key to finding the information is Serial Poll Response.

Now that you have checked out the operation of your system (hopefully, all devices are operating properly),
you can spend some time learning how to control it.

Controlling the Bus

All the operations in this section assume the HP85A and HP-IB interface are set up as system controller (as
received from factory). Typically, the first operation necessary for HP-IB systems is to program all devices
for remote operation via the bus. Most devices are capable of manual, front panel operation or of remote, bus
operation. The remote mode of operation for a device is selected by setting the REN, or Remote Enable line,
and addressing the device to listen. The REN line is set by the HP85A when power is turned on, the computer
is RESET, or the REMOTE statement is executed. Addressing the device to listen, is performed by executing
any statement which includes that device’s listen address. To place devices 22 and 10 under remote control,
the statement

could be used. To prevent any of the system devices from being returned to local operations from the front
panel (by the Return-to-Local switch), a local lockout, or LLO message must be sent. The example cited
above now looks like this:

Using the HP-IB Interface

Now the system is set up for remote control, with the front panel controls disabled. The next step then is to
program each device for the desired mode of operation. This is generally accomplished by means of simple
OUTPUT statements directed to the device to be programmed, which is discussed further in the following
section. For instance, suppose an HP 3455A DVM (digital voltmeter) device is to be set to the .1 volt DC
range, continuous sample. The ASCII sequence of characters necessary to set it to this range is “‘FIRITI1.”
The following statement accomplishes this:

It is important to note that it is the ASCII characters sent by the OUTPUT statement which actually set the
HP 3455A DVM to the .1V DC range. Selecting some other function merely involves changing the charac-
ters being sent to the device to the appropriate ones to select that function. The actual characters sent are
“‘device-dependent,” that is, their meaning depends upon the interpretation given them by the receiving
device.!

The example system consists of two devices, so both may need to be programmed, as shown below:

R i

e

et

ol s

Once the system devices are programmed for operation, it is possible to take readings from them. This is
accomplished by means of the ENTER statement, which addresses the specified device and accepts data from
it. For example, to take a voltage reading and a frequency reading, the following statements could be used:

1 For example, the word ‘*vie’’ means ‘‘to compete”’ to an English-speaking person, but means “‘life’’ to a Frenchman.

93

94 Using the HP-IB Interface

The example as presented so far simply obtains the most recent readings taken by the voltmeter and counter. '
Suppose your particular application requires that the two readings occur simultaneously. An example of

such an application is that of a voltage-to-frequency converter accepting a continuously varying voltage and

generating an output frequency dependent upon the input voltage. To take both a voltage and a frequency

reading simultaneously, the instruments can be triggered.

To accomplish this, it is necessary to change the operating modes of the devices from continual sample to
triggered sample. The OUTPUT statements are changed accordingly, and a TRIGGER statement is inserted
just before the ENTER statements. The TRIGGER and ENTER statements are put into a loop to provide a
more complete picture of the converter’s operation.

S

T G S

)

X

¥4

fox i s

Oy LR el Tles

The ENTER and OUTPUT statements have been presented briefly as a means of programming instruments
and taking readings. The next section deals with the more general topic of HP-IB data transfers.

HP-IB Data Transfers

Introduction

The data transfer?, or the data message as it is known by HP-IB specialists, can be either the simplest or the
most complex function available to the user. This section will show the simplest transfers first, then proceed
to more complex transfers (this is the TRANSFER statement provided by the I/O rom).

1 This is the general term for a data exchange — it does not relate specifically to TRANSFER, an advanced 1/O capability.

Using the HP-IB Interface 95

Simple Output Operations

To send data from the HP-85A to a device on| the HP-IB, the OUTPUT statement is generally used. It is also
possiblé, however, to use the PRINT statemenjxt to send data to an HP-IB device. To do this requires executing
a PRINTER IS statement to change the systeﬂn printer over to the specified HP-IB device. The PRINTER IS
statement can be inserted into the beginning Of a standard BASIC program, then all the PRINT statements in
the program will send their output to the sped:,ified device until a new PRINTER IS statement is executed. If
only one HP-IB device is being sent data, thi# scheme works fine. For example,

This method becomes cumbersome when several devices are to be sent data, such as when programming a
DVM (digital voltmeter) and a counter.

Obviously, this is not the method of choice/ Compare the above program sequence to the following one,
which does the same thing.

The OUTPUT statement data can be formatted with the OUTPUT USING statement, as shown in Section 1.
The HP-IB version of this statement looks like this:

OUTRLT FE2 UEIHG "R " [prog seq”

96 Using the HP-IB Interface

In general, a simple HP-IB output looks very much like any other output, except that additional information
in the form of the HP-IB device address must be specified with the select code. If you need more information
about using the OUTPUT statement, you can find it in Part 1 of this manual. More advanced techniques of
outputting data are covered in the Advanced HP-IB TRANSFERS section.

Simple Input Operations

The ENTER statement is the simplest method of inputting data from an HP-IB device to the HP-85A. To
accomplish a data input from a device such as an HP 59309 Clock, the following statement can be used:

EMTER FlaiRE

In this case, the statement is terminated by a line-feed sent by the clock as the last character. Other devices
may send EOI (End or Identify) with the last character to terminate a data input. If this is the case for your
device, the ENTER statement could be modified as shown below for device #06:

EHTER Vo WRITHG "X RE

The “°%’’ image specifier allows the EOI message! sent by the device to terminate the ENTER statement.
However, if a line-feed character is part of the data being sent, the line-feed will prematurely terminate the
ENTER statement shown above. The following statement waits for the EOI message before terminating (does
not terminate on line-feed):

If you need more information regarding input data formatting, please refer to Part 1, where the ENTER
statement is covered in greater detail. For information pertaining to more flexible data input TRANSFERS,
or data input to the HP-85A when it is a non-contrqller, refer to the following section on Advanced I/O
Operations.

Advanced I/O Operations

Introduction
If you are reading this section, it is probably because you have a problem that can’t be solved with a simple
OUTPUT or ENTER statement. Basically, this section deals with four types of transfers:

1. Data transfers involving a non-controller HP-85A.

2. ENTERs and OUTPUTS that include multiple listeners.

3. Data transfers initiated by the HP-85A which do not include the HP-85A.

4

. User-specified TRANSFER types, including interrupt and fast-handshake.

1 The EOI message here is the END message, sent by some devices with the last character of a data exchange. It indicates the end of data.

Using the HP-IB Interface 97

’ Non-controller Addressing

This type of I/O is used when either the HP-85A has passed control to another device and is no longer active
controller, or when the HP-IB interface has been set to non-system controller (set by a switch in the interface
— see the 82937 Hardware and Theory manual for more detailed information) and has not received active
control from the current active controller.

When the HP-85A (or any device, for that matter) is not the active controller, it must wait to be addressed to
talk or listen before it may output or input data on the bus. There are three means of accomplishing this
waiting to be addressed. The first is automatic and would be the method of choice for a simple system.
Simply specify the interface select code with no device numbers in the ENTER or OUTPUT statement, and
the HP-85A will wait to be addressed before transferring the data. The following statements show the
conditions necessary to begin a transfer: '

LN FAiRE Wait to be addressed to listen by the controller, then read data into
or TRAMEFER ¥ T FE.. JAS.

} Wait to be addressed to talk by the controller, then send A$.

or

A second method of waiting to be addressed is to periodically check the interface status for the proper
condition. The computer could be accomplishing some useful computation during the period of time it is not

. addressed, then when a status check does finally indicate that the HP85A has been addressed, it could
transfer the requested data. For example, the following program increments and displays a counter then
checks to see if it is addressed. If not, the program loops back to the increment and display statements.
Otherwise, the value of the counter is transferred to the HP-IB.

(See ‘ ‘HP-IB for the Specialist’ section for a complete explanation of the Status Registers.)

The sequence shown above to read status and check for being addressed to talk is identical for an ENTER
operation. The difference is in which status bit is to be checked, and is shown in the following statements:

98 Using the HP-IB Interface

Bit 3 of status register #5 indicates addressed to listen when it is set to a 1. Bit 5 of status register #5
indicates addressed to talk when it is set to a 1.

The third method of waiting to be addressed is to enable the interface to interrupt the HP-85A when it is
addressed. This relieves the programmer of the necessity of designing his program around a periodic status
check, and it allows the program to perform useful computation until the computer is addressed to talk or
listen. An example serves to demonstrg)te this third method:

Line 20 sets up an interrupt condition of listener active (or addressed-to-listen). Line 40 directs the program
to line 100 when the listener active interrupt occurs. Lines 60-80 represent the computational portion of the
program, purposefully képt simple here. Line 100 starts the end-of-line-branch service routine, which is
executed when the HP85A becomes addressed to listen. The ENTER statement specifies only the interface
select code (no device numbers!) which means ‘‘wait until addressed to listen before inputting data.”’ Line
130 re-enables the interface for an addressed-to-listen interrupt. Output works the same way, except a
different value (16) is used for the ENABLE INTR mask, and an OUTPUT 7;(value) statement is substituted
for the ENTER statement. See ‘‘HP-IB for the Specialist’’ section for a complete explanation of the Control
Registers, and interface interrupts as discussed under Status Register 1 of the same section.

Suppose our non-controller HP-85A is to both send and receive data? The basic sequence of operations
remains the same but an additional status check is necessary to determine which operation to perform. The
following program illustrates this status check. Line 100 obtains the status value and lines 110 and 120
determine if the cause of an end-of-line branch was either for being addressed to talk or for being addressed to
listen.

Using the HP-1B Interface 99

Custom Bus Sequences

Occassionally it may become necessary to send a custom bus sequence to a device under development or to
one which requires a sequence different from those normally sent by the HP-85. The SEND statement makes
such custom operations possible, and even gives a performance increase in the bargain. However, the price

you pay is that you have to specify every character of the sequence yourself: its no longer done automatically.

As one example of a custom bus sequence, the following statements send a Secondary Command to a 9874
digitizer (device 06) on select code 7. The Secondary Command of 16 causes the digitizer to output its status
which is read as one byte by the following ENTER statement (notice that ENTER does not specify addres-

sing).

Unlisten Address myself Address digitizer ~ Send Secondary
all devices to listen to talk Command 16

Other operations that could be performed include Parallel Poll Configure and Parallel Poll Unconfigure.
You can utilize the tables included in “HP-IB for the Specialist” to determine the necessary codes to

accomplish your task.

100 Using the HP-IB Interface

Multiple Listener Transfers ‘

When more than one device needs to receive data being transferred, these additional devices need to be
included in the listen address group. This is accomplished in different ways for ENTER and for OUTPUT
transfers as described in the following paragraphs.

Both the OUTPUT and the output TRANSFER statements have a built-in provision for multiple listeners, as
shown in this example: Assume that a string of characters (B18$) is to be sent to a printer (device 04) and to a
non-controller HP-85A (device 20) on the HP-IB. The OUTPUT statement would look like this:

GLITFUT #8d . P20:BR1F

The TRANSFER statement would look like this:
TREAMSFER B1$ TO Pad, 728 THTR

The only restriction to adding listeners to an output or TRANSFER is that they all be on the same select code
(in this case 7).

Specifying other listeners for an ENTER data transfers is also possible, but it is not as straightforward as for
the OUTPUT transfer. The ENTER statement specifies only the data source (ENTER 713 , for example) and
the HP-IB does not allow multiple talkers. The bus needs first to be configured for the transfer, then an
ENTER statement can be executed with only the interface select code specified so the bus will not be
reconfigured. For example, device 07 (a voltmeter) is to be the talker, devices 13 (a printer), our HP-85A
(use MLA which means My Listen Address), and 04 (a tape cartridge unit) are to be listeners. The following

sequence unlistens all previous listeners, sends the new talk and listen addresses, and finally enters the data:

Another type of multiple listener transfer is one in which the HP-85A is neither sending or receiving the data:
the transfer occurs between other devices on the bus. For example, to send a data file from device 11 to
devices 23, 04, and 07, the following statements would be used: ‘

Using the HP-IB Interface 101

The transfer begins automatically when the ATN (attention) line goes false (by executing RESUME),
indicating that all commands have been sent. In this case, since the HP-85A has not addressed itself for the
transfer, the operation does not have to wait for the HP-85A to execute an ENTER or OUTPUT statement in
order to begin. Obviously, it is not necessary to specify more than one listener — the same statement could
be used to start a transfer between one talker and one listener as well.

There is a problem with the above example: how does the HP-85 know when the data transfer is complete?
The simplest manner is to address the HP-85 as a listener in line 10, execute an input interrupt TRANSFER to
monitor the bus transfer, and wait for an end-of-line branch upon termination of the TRANSFER. The
example below shows how this might be done. k

Alternate Transfer Types

As has been shown in examples cited in the previous sections, it is possible to transfer data under interrupt
(which allows TRANSFERS and program execution to occur at the same time) or by fast handshake
(maximum data transfer rate possible). The TRANSFER statement is used to specify which type (INTR or
FHS) is to be used. This statement has been discussed in Part 3, in the Advanced TRANSFERS section, and
details on its use are available there. The following program demonstrates how an HP-IB TRANSFER can be
executed:

102 Using the HP-IB Interface

Handling Service Requests

Introduction

This section deals with asynchronous requests for service. The cause for a service request is device-
dependent, that is, different devices have different reasons for requesting service. For instance, a printer may
request service because it has just run out of paper, or a digitizer may request service because an operator
error has occurred. At any rate, once a request has been received, two actions must be taken:

1. Locating the device which requested service, and

2. Determining the reason for the device’s request.

The following sections show you how to do this.

Sensing Service Requests

The HP-IB interface allows you to check the interface status to see if a service request (SRQ) has been
received. This status check is performed by the following statement:

BTATUS Fol5

Bit 3 of variable S now indicates if an SRQ has been received, and the program can make a decision of how to
handle an SRQ if one has been received. (See ‘‘HP-IB for the Specialist™|section for a complete description
of the Status Registers.)

An alternative to the periodic status check is to program for an end-of-line branch condition of SRQ. The
following sequence enables an end-of-line service routine, then establishes an interrupt mask for SRQ and

enables interrupts from the interface:

Using the HP-IB interface 103

The program will execute a subroutine at line 200 whenever an SRQ is received. What to do at line 200 is the
subject of the following sections.

Determining the Problem

It is the purpose of the HP-IB serial poll to provide the active controller with specific, device-dependent
information about the device being polled. The bits of the device’s serial poll response byte can have any
meaning assigned to them and are generally used to indicate some problem or special condition within the
device. Bit 6 however, is reserved to indicate that the device is currently requsting service.

Referring back to the example below, line 300 is executed when the program has determined that device 15
requested service. The first operation to perform in servicing device 15 is to obtain its status. Assume that the
bits are assigned the following meanings:

Bit 0: Out of paper.

Bit 1: Cover off.

Bit 2: Parameter out of range.
Bit 3: Improper escape sequence.
Bit 4: Always 0.

Bit 5: Always 0.

Bit 6: SRQ Active.

Bit 7: Always 0.

Device 15’s service routine might look like the following:

In a larger system, the program would just perform sequential serial polls to determine which device
requested service, and to determine that device’s current status, as shown briefly below:

104 Using the HP-IB Interface

Non-controller Operations

When the HP-85A is not the active controller, certain constraints are fg
violating bus protocols. That is, certain operations can only be performe
only by an active controller. A non-controller is allowed to only talk, liste

Passing Control

The HP-85, as active controller, can pass controller responsibilities to ano

rced on the programmer to avoid
d by the system controller, others
n, and request setvice.

her device by executing the PASS

CONTROL statement. This allows the HP-85 to direct its attention to activities other than bus control, such

as would be the case when it must direct and coordinate the activities of tw

b or more HP-IB systems, or when

it must dedicate all processing power to a high-speed block data transfer to a host computer. The followihg
program segment passes control to device 20, another HP-85, which is currently a non-controller:

It may be necessary for our HP-85 to later assume control of the bus, in which case some provision must be

made to determine that control has been passed to our HP-85. This is discussed in the following section.

Recelving Control

Although a simple check of interface status can tell the program that the HP-85 has received active control, it

is more advantageous to use the end-of-line branch facility to do this auto

matically. The following program

segment passes control to device 20, but also makes provision for an end-of-line branch to line 700 when

active control is later received:

This end-of-line branch capability can serve to also indicate that the HP-85 has been addressed to talk or to

listen by the active controller. This is discussed in the next section.

Using the HP-1B Interface

Non-controller Responses

In an earlier discussion it was shown how the HP-85 sends and receives data as a non-controller — only the
interface select code is specified. No device addresses are allowed! The HP-85 can use the end-of-line branch
facility to determine when it has been addressed to talk or listen, and this is shown in the following example.
This example is an extension of the previous one, in that control is passed and interrupts are enabled for
active control, addressed to talk, and addressed to listen.

Additional information on HP-IB interrupts can be found under Control Registers and Status Registers in the
‘‘HP-IB for the Specialist’” section.

Sending Service Requests

Some condition in the HP-85 may require the attention of the active controller, so the HP-85 needs to be able
to send a service request to the controller. The REQUEST statement allows the HP-85 to assert SRQ and to
send a serial poll response byte to the controller when it finally conducts a serial poll on the HP-85. Bit 6 of
this byte should be set to a 1 to indicate that the HP-85 indeed requested service, but the other bits may
indicate anything you (as the system designer) deem important. So, to request service of device 720 (who we
just passed control to) and to indicate that the HP-85 is ready with data, our example will set bits 0 and 6. (Bit
0 will mean ready-with-data in our example system.)

HEEH REQUEST ¥l o+ &4

105

106 Using the HP-1B Interface

Handling Interface Problems

This section describes some of the tools available to you for avoiding and dealing with problems that may
arise when using an HP-IB interface. This is not meant to say that you should expect problems, but good

programming practice is to anticipate problems and deal with them in adv

Avoiding Bus Hang-ups

ance.

Generally, when an HP-IB device develops a problem, either it holds up the data transfer that it is involved

in, or it sends an SRQ (service request) to the controller, or it does both

We have seen how the controller

might handle the service request (see the section called “Handling Service Requests’’), but suppose the

device stops handshaking in the middle of a data transfer and at the same

time it sends an SRQ? This event

presents a problem to the HP-85 because it cannot perform an end-of-line branch to service the SRQ. Why
this is so becomes apparent when you consider the nature of an end-of-line branch: it does not occur until the

current BASIC program line has been executed, and if an ENTER or OU
device halted the transfer, remember) the HP-85 is “‘hung’’. It cannot cq
execute an end-of-line branch until the operation completes. The HP-85
transfer however, by using the SET TIMEOUT capability provided for su

The following example shows the sequence of operations necessary to pro

of recovering from a bus hang-up:

imeout service e

3 .
BOE-ER 2 T L SR R

TPUT still has not completed (the
ymplete the transfer, and it cannot
can recover from an unsuccessful
ch a situation.

vide a program with the capability

Were

Using the HP-IB Interface 107

It is up to the programmer to determine what actions the program is to take based upon the results of the status
information obtained. In most instances it will be necessary to RESET the interface, avoid transfers with the
device causing the hang-up, and signal to the system operator that a malfunction has occurred in that device.
These actions are described in the next section.

Dealing with Problems

You are probably reading this section either because your HP-IB system is not working or because you need
to make provisions in your program to deal with problems. This section first deals with the case of a
non-working system, since it is then that you need this information in a hurry.

If the HP-IB system appears to be locked up (everything is running but nothing is happening) you can RESET
the HP-85 to regain control of the computer. The exception to this is when a Fast-handshake TRANSFER is
hung. The only possible recourse to such a case is to assert IFC — by whatever means' — or to power down
the HP-85 and then power it back up.

You may now wish to perform a serial poll of the device in question to determine its condition. This,
however, requires that you know how to obtain the correct information from the device. It may be sufficient
to simply turn the device off then back on to get it back into operation.

The following section shows the alternatives (and reasons for each) available to the programmer writing a
routine to handle error conditions encountered during HP-IB operations.

Action Reason/Result

FOR T = 1 TO & Obtain the current state of the interface to determine conditions and
STHTUS F.1:5012 possible causes.

Obtain current status of devices in the system. (Maybe a printer is out
of paper.)

Return the desired device to its particular device-dependent “‘clear”’
state. (Like a reset.)

CLEAR 7 Return all devices to their device-dependent states.

ABORTIO ¥ Terminates all bus activity and returns control to the HP-835 as system
controller. This would normally be used only by an HP-85 that is set
to system controller (the original factory setting is that of system
controller).

It is a good practice to preserve a hard copy record of the interface and device status as the information is
obtained. Also printed should be a record of any actions taken to rectify the situation. This information is
vital for analyzing the cause of a system failure, and can be used by the system operator to make necessary
adjustments or corrections (such as loading paper in the printer!).

1 A bus analyzer could be used to assert IFC.

108 Using the HP-IB Interface

HP-IB for the Specialist

This section is intended for use by the specialist who is familiar with the IE

E-488-1978 interface standard and

who requires detailed information about programming the 82937 A Interface. It is merely a description of the

tools available for use by the expert; it is not a discussion of how to use th

HP-IB I/0 Statements
ABORTIO:

ASSERT:

CLEAR:

CONTROL.:

ENABLE INTR:

ENTER:

em.

If the Interface is System Controller, it pulses Interface Clear dFC)

and sets Remote-Enable (REN) try
Controller but is Controlier Active,
‘““untalks’’ any other Talkers on th
System Controller nor Controller A

the present state and becomes read
HALT).

ASSERT does an immediate write
control lines, regardless of whether

e. If the Interface is not System
it sources its Talk Address which
¢ bus. If the Interface is neither
ctive, it leaves the interface bus in
y for the next I/O operation (see

to Control Register 2, the HP-IB
the Interface is ‘‘busy’’ with I/O.

Writing to Register 2 via CONTROL is identical except that CON-
TROL execution waits until the Interface is no longer busy. The user

must be aware of the Interface logic

to correctly write to Register 2 or

the Interface may become ingperative and have to be reset.

Must be Controller Active; if bus addressing is specified, does the
addressing and sends the Selected Device Clear command. If no ad-

dressing is specified, sends the u

iversal Device Clear command.

Upon completion of CLEAR, the ATN uni-line message remains true;
it can be set false by doing a RESUME.

Writes to Control Registers within
ated if writing occurs to a non-exi
Registers are 0-3 and 16-23.

e interface. Error 111 is gener-
stent register. The valid Control

Same as Write Control to Register 1, provides the End-of-Line Inter-

rupt Enable Mask.

If addressing is specified, the Interface must be Controller Active; if

no addressing is specified, the Interface begins inputting when it

becomes Listener Active. The ex
ENTER statement with and without

EMTER 38% 5 A%

amples below show use of the
addressing.

Must be Controller Active, performs

bus addressing prior to entering into the
string variable A$.

EHTER 3 5 A#

If not Controller Active, the Interface

waits until it is addressed to Listen. If

. the Int

erface is Controller Active, it

must have already addressed itself to

Listen

or error 116 is generated.

HALT:

LOCAL:

LOCAL LOCKOUT:

OUTPUT:

PASS CONTROL:

PPOLL:

REMOTE:

REQUEST:

RESET:

Using the HP-IB Interface

Causes the Interface to ‘‘break away’’ from its current I/O operation
and become ready for the next I/O operation. HALT leaves the bus
signals unaffected. Note that ABORTIO has the same affect as HALT
if the Interface is neither System Controller nor Controller Active.

If no addressing is specified, then the Interface must be System Con-
troller and REN is set false. If addressing is specified, the Interface
must be Controller Active, then addressing is performed and the Go to
Local (GTL) command is sent. After GTL is sent, the ATN uni-line
message remains true; it can be set false by doing a RESUME.

Must be Controller Active, causes the Interface to source the Local
Lockout (LLO) command. After LLO is sent, the ATN uni-line mes-
sage remains true; it can be set false by doing a RESUME.

If addressing is specified, the Interface must be Controller Active; if

no addressing is specified, the Interface begins outputting when it

becomes Talker Active. The examples below show use of the OUT-

PUT statement with and without addressing.

QUTFUOT 285, 3688 A F Must be Controller Active, performs
bus addressing prior to outputting A$.

CHITFLT & 5 A% If not Controller Active, the Interface
waits until it is addressed to Talk. If the
Interface is Controller Active, it must

have already addressed itself to Talk or
error 115 is generated.

Must be Controller Active. Addressing, if specified, precedes the
Take Control command. The Active controller can pass control to any
device capable of controlling the bus (including itself).

Must be Controller Active, returns a Parallel Poll response byte from
the Interface.

Must be System Controller. Sets REN and sources addresses, if
specified, to put bus devices in the remote state. If addresses are
specified, ATN remains true; RESUME can be used to set ATN false.

Must be non-Controller Active, sets SRQ on the interface if bit 6
(based on bits 0-7) is equal to one in the specified byte. This byte is
provided to the Controller Active device upon being Serial Polled
(which causes SRQ to be cleared). SRQ can also be cleared by provid-
ing a REQUEST byte with bit 6 = 0.

Provides a hardware reset to the Interface, returning it uncondition-
ally to its power-on state. This causes the Interface to perform self-
test. If self-test fails, Error 110 is displayed; if self-test passes, no
display occurs.

109

110 Using the HP-IB Interface

RESUME:

SEND:

SPOLL.:

STATUS:

TRANSFER:

TRANSFER Type

Must be Controller Active, sets ATN = 0. This is useful, for exam-
ple, after doinga CLEAR, which leaves ATN = 1. Note that normally

RESUME is not required since da
TER, TRANSFER, etc.) ensure tha

Used to send commands (in which ¢
ler Active) or data (in which case
tive). While sending data, ATN is
ATN is true. Upon completion, A
RESUME instruction.

Must be Controller Active, used to
on the bus to obtain its Status Byte.
the device is requesting service

dependent information.

Used to read Status Registers in

a I/O statements (OUTPUT, EN-
t ATN is set to 0.

ase the interface must be Control-
the interface must be Talker Ac-
false. While sending commands,
TN can be set false by using the

conduct a Serial Poll of a device

The Status Byte indicates whether
and provides additional device-

the Interface. STATUS is im-

mediately executed regardless of the Interface state (unless IFC is

true). The valid Status Registers are 0-6; attempting to read registers
outside of this range generates Error 111.

Used for Interrupt or Fast Handshake 1/O. TRANSFER relies on the
use of declared BUFFERS as discussed in the /O ROM ERS; refer to

this document for information on b
pointers, etc. Associated with TR

DELIM

COUNT

uffer control; i.e. Fill and Empty
L ANSFER are three termination
specifiers: (1) A delimiter numeric e
tion count (COUNT) and (3) and E(
below are the termination specifiers
of TRANSFER.

xpression DELIM, (2) a termina-

DI enable specifier (EOI). Shown

which are permitted for each type

EOI

TRANSFER (in) FHS

TRANSFER (out) FHS

TRANSFER (in) INTR

TRANSFER (out) INTR

TRIGGER:

Not
applicable

Not
applicable

Yes

Not
applicable

Used if supplied, otherwise
Transfer proceeds from Fill
Pointer to End of Buffer.

Not applicable — Transfer

Enables EOI
termination.

Not applicable —

proceeds from Empty Poin
to Fill Pointer.

Used if supplied, otherwise

input terminates with DELI
with EOI or when Fill Point
is at End of Buffer.

Not applicable — Transfer

proceeds from Empty Pointer

to the Buffer Fill Pointer.

er EOL sequence sent.

Enables
, EOI termination.

=

Not applicable —
EOL sequence sent.

Must be Controller Active, does addressing (if specified) followed by

the Group Execute Trigger command. Upon completion, ATN re-
mains true; it can be set false by the RESUME instruction.

"

Using the HP-IB Interface

Typical HP-IB Output Sequence

The table below illustrates the command bus sequence produced by the following statement (commands are
in black, data bytes are in color):

18 OUTRUT Fa5: "HEMLETT-FACEARD THTERFACE B

Command Binary Decimal Mnemonics

U 01010101 85 ATN,MTA

? 00111111 63 UNL

% 00100101 37 LAG,ATN

H 01001000 72 (DATA)

E 01000101 69 (DATA)

w 01010111 87 (DATA)

® * [] []

[] ® [] []

o ® [] L]

[] [] [] []

L ® [[]

[] [] [] [

B 01000010 66 (DATA)

u 01010101 85 (DATA)

S 01010011 83 (DATA)
00001101 13 (CR)
00001010 10 (LF)

Typical HP-IB Enter Sequence

The table below illustrates the command bus sequence produced by the following statement (commands are
in black, data bytes are in color):

1@ EMTER V85 JAF

Command Binary Decimal Mnemonics

? 00111111 63 ATN © UNL

5 00110101 53 MLA

E 01000101 69 TAGATN

H 01001000 72 (DATA)

E 01000101 69 (DATA)

w 01010111 87 (DATA)

[] ® [] L

[] e [] []

L ® [] []

B 01000010 66 (DATA)

U 01010101 85 (DATA)

S 01010011 83 (DATA)
00001101 13 (CR)

00001010 10 (LF)

111

112 Using the HP-IB Interface

HP-IB Control Registers .

These registers are set by executing the CONTROL statement. For example, to set the value of control
register 0 to a 1, execute CONTROL7,0;1. Execution of the CONTROL statement is delayed until any
operation currently in progress has been completed. The ASSERT statement, however, provides immediate
access to CR2, the HP-IB Control Lines Register, regardless of any operations in progress.

CAUTION

Control'Registers 2 and 3 provide direct access to the HP-IB control anj data lines. They must be used
with care, and used only by persons aware of HP-IB protocols! It is pos
or device damage by improper use of these registers.

ible to cause bus malfunctions

A complete control register table is given, followed by explanations of the individual registers.

HP-IB Control Registers

Register Bit Number Default Register
Number 7 6 5 4 3 2 1 0 Value Function
Always | Always Parity
CRO X X X X Odd | Even One Zer 0 Control
DCL or Interrupt
CR1 IFC | LA | CA | TA [SRQ | SDC GET SCG 0 Mask
Not HP-IB
CR2 X | REN | SRQ | ATN | EOI DAV NDAC | NRFD | Applicable | Control Lines
Not HP-IB
CR3 Dlo8 | DIo7 | Dioé | DIO5S | DI04 | DI03 Di02 DIo1 | Applicable | Data Lines

CRO: Parity Control
This register controls the parity mode for input and output data: no parity is used for commands. The
right-most non-zero bit controls the parity selection, with an all-zero value (CRO = 0) meaning no parity
(default at power-on). For example, M TR 7, ;4 selects even parity. CUOMTROL V.88
selects always one parity (right-most bit set is Bit 1 = always one).

CR1: Interrupt Mask
A bit when set enables the corresponding interrupt condition to cause an end-of-line branch.
e Bit0 when set enables interrupt when a secondary command is received immediately following receipt
of MTA or MLA. The value of the secondary command that was received is stored in SR6, the
secondary command register. This is an event-initiated interrupt.

e Bit1 when set enables interrupt when a GET (Group Execute Trigger) is received while addressed to
listen (LA). This is an event-initiated interrupt.

e Bit2 when set enables interrupt either when DCL (Device Clear) is received, or when SDC (Selected
Device Clear) is received while addressed to listen (LA). This is an event-initiated interrupt.

e Bit3 when set enables interrupt when SRQ (Service Request) is True.

Using the HP-IB Interface 113

e Bit 4 when set enables interrupt when TA (talker active:addressed to talk) becomes true. If TA is
already true, then a O-to-1 transition of Bit 4 of CR1 causes an interrupt. This is a state-initiated
interrupt.

o Bit 5 when set enables interrupt when CA (controller active) becomes true (by receiving control). If CA
is already true, then a O-to-1 transition of Bit 5 of CR1 causes an interrupt. This is a state-initiated
interrupt.

e Bit 6 when set enables interrupt when LA (listener active:addressed-to-listen) becomes true. If LA is
already true, then a 0-to-1 transition of Bit 6 of CR1 causes an interrupt. This is a state-initiated
interrupt.

e Bit 7 when set enables interrupt when an IFC (Interface Clear) occurs. An externally caused IFC can

cause an interrupt even when the interface is the system controller. This is an event-initiated interrupt.

The following diagrams illustrate the interface response to state-initiated, event-initiated, and SRQ inter-
rupts. The interrupt-cause status registers (SR1) bits are set when an interrupt occurs and cleared when the
status of SR1 is read.

Event-initiated Interrupt
(SCG,GET,SDC/DCL,IFC)

True

Event
False
]
|
Mask 1 |
(CR1) 0 \ !
| .
1 CONTROL ! CONTROL clears bit.
Interrupt sets bit.
(SR1) 0

|
Interrupt STATUS 7, 1 clears interrupt.
occurs

114 Using the HP-IB Interface

State-initiated interrupt
(TA,CA,LA)

True

State

A

False —\

State first becomesl True. State again becomes True. (never went False)

|
]
Mask | |
R /; |
!
|

1

| New Mask written
I gives 01 transition.

i New Mask written
I'but not 0—1 transition.

Interrupt
(SR1)

\ STATUS STATUS \ STATUS

Interrupt Interrupt Interrupt
oceurs occurs occurs

SRQ interrupt

True
SRQ
False
| ,
l |
Mask : !
(CR1) | New Mask written is not |
: a 0->1 transition {
| but produces interrupt. |
1
Interrupt
(SR1)

Interrupt STATUS Interrupt | STATUS
occurs oceurs

Using the HP-IB Interface

CR2: HP-IB Control Lines

This register gives direct access to the 8 HP-IB control lines. A bit, when set, causes the corresponding
HP-IB control line to be set TRUE for as long as the CR2 bit is set. The user is cautioned to be aware of bus
protocols when using this register. For example, a non-controller may not set the ATN line true, and a
non-system controller is not supposed to assert REN line.

CR3: HP-IB Data Lines .

This register gives direct access to the 8 HP-IB data lines, DIO1 trough DIO8. Setting a bit in this register
causes the corresponding HP-IB data line to be set TRUE. (The user should note; however, that HP-IB data
lines are numbered 1 through 8 while the control register data lines ‘are numbered O through 7.) The user
should exercise caution when writing to CR3, the HP-IB data lines register. For example, by writing to CR3
while the interface is addressed to listen (LA state), a hardware conflict will occur in the interface that could
cause erratic operation and damage the interface!

User-defined End-of-Line Sequence Registers

Control registers CR16 through CR23 provide the user with the capability of customizing the end-of-line
output sequence that is sent at the end of a data transfer and with the *‘/*” QUTPUT/PRINT image specifier.
Also provided is the capability of automatically asserting EOI (End or Identify) with the last character of a
data transfer.

The following table shows these registers, and their meanings are explained in the following paragraphs.

HP-IB End-of-Line Sequence Registers

Control

Register Bit Number Default Register
Number Value Function

EOI

CR16 Enable | X X X X EOL2 | EOL1 | EOLO 2 " | EOL Control
CR17 Default value = 13 (Carriage Return) 13 | Character 1
CR18 Default value = 10 (Line Feed) 10 Character 2
CR19 0 Character 3
CR20 0] Character 4
CR21 0 Character 5
CR22 0 Character 6
CR23 0 Character 7

115

116 Using the HP-IB Interface

CR16: EOL Control
This register controls the end-of-line character sequence that is normally sent after a line of output and for the ‘
““/** image specifier.
e Bits 0 through 2 specify the number of characters sent as the EOL (end-of-line) sequence. The default
count is 2, which causes 2 characters (CR and LF) of registers CR[17-CR23 to be sent. A count of 0
specifies that no EOL sequence is to be sent.

e Bits 3 through 6 are not used. (X=don’t care)

e Bit 7 when set causes the HP-IB control line EOI to be asserted with the last byte of a data transfer. If
the EOL count is non-zero, EOI is asserted with the last character of the EOL sequence. If the EOL

count is zero, EOI is asserted with the last character of the data list being sent (PRINT, SEND and
TRANSFER only).

CR17-CR23: EOL Sequence

These registers contain the characters sent as the end-of-line sequence. Default values are a carriage-return
(decimal 13) for CR17 and a line-feed (decimal 10) for CR18.

To set up an EOL sequence for double-spaced printing for example, set the EOL count to 3 and the EOL
sequence to CR, LF, LF.
COMTROL PLoLle: 3015, 18, 18

HP-IB Status Registers

These registers are read by executing the STATUS statement. For example, to return the value of status

register 3 in variable S3, execute ETFTLIE 7. % : 53, A complete status register table is given, followed
by explanations of the individual registers.

HP-IB Status Registers

Status
Register Bit Number Default Register
Number| 7 6 5 4 3 2 1 0 Value Function
Interface
SRO 0 0 0 0 0 0 0 1 1 Identification
DCL or Interrupt
SR1 IFC | LA CA | TA | SRQ| SDC | GET | SCG 0 Cause
HP-1B Control
SR2 0 REN | SRQ | ATN | EOI | DAV |NDAC | NRFD 64 Lines
Not HP-IB Data
SR3 [DIO8| DIO7 | DIOS6 | DIOS \pIO4 DIO3 | DIO2 | DIO1 | Applicable Lines
\ HP-1B Address/
SR4 0 0 SC A4 A3 A2 A1 A0 53 System Controller
Parity State
SR5 SC LA CA TA | SPE | Error | REN LLO 160 Register
Secondary
SR6 0 0 0 SC5 | SC4 | sC3 SC2 SCi1 0 Commands

Using the HP-IB interface

SRO: Interface Identification
Always returns a value of 1, meaning an HP-IB type interface.

SR1I: Interrupt Cause
A bit when set indicates the interrupt condition that caused an end-of-line branch. SR1 is reset to O when it is
read by a STATUS statement.

e Bit 0 when set indicates that an SCG (secondary command) was received. The value of the secondary
command received is available in SR6. This is an event type interrupt: the interrupt, if enabled, will
occur when a secondary command is received.

e Bit 1 when set indicates that a GET (group execute trigger) was received while addressed to listen (LA).
This is an event type interrupt: if enabled, the interrupt will occur when trigger is received.

e Bit 2 when set indicates that either (1) a DCL (device clear) was received or that (2) an SDC (selected
device clear) was received while addressed to listen (LA). This is an event type interrupt: if enabled,
the interrupt will occur when device clear is received.

e Bit 3 when set indicates that an SRQ (service request) was received. The interrupt will occur as long as
the SRQ line is TRUE. In general, this means that your service routine must make the SRQ ‘‘go
away,”” which is usually accomplished by satisfying the requesting device’s need for service.

e Bit 4 when set indicates that either (1) the talker active (TA) bit of CR1 underwent a 0-to-1 transition
while the interface was addressed to talk, or (2) the interface became addressed to talk while the talker
active (TA) bit of CR1 was set. This is a state-enable interrupt.

e Bit 5 when set indicates that either (1) the controller active (CA) bit of CR1 underwent a O-to-1
transition while the interface was active controller, or (2) the interface received control while the
controller active (CA) bit of CR1 was set. This is a state-enable interrupt.

e Bit 6 when set indicates that either (1) the listener active (ILA) bit of CR1 underwent a 0-to-1 transition
while the interface was addressed to listen, or (2) the interface become addressed to listen while the
listener active (LA) bit of CR1 was set. This is a state-enable interrupt.

e Bit 7 when set indicates that an IFC (interface clear) has occurred on the bus. This is an event type
interrupt: the interrupt, if enabled, will occur when interface clear is received.

17

118 Using the HP-IB Interface

The following diagrams illustrate the interface response to state-initiated, event-initiated, and SRQ inter-

rupts. The interrupt-cause status register (SR1) bits are set when an interrupt occurs and cleared when the
status of SR1 is read.

Event-initiated interrupt
(SCG,GET,SDC/DCL,IFC)

True
Event
False
1 /]
Mask T
(CR1) - [
1 CONTROL ! CONTROL clears bit.
Interrupt . sets bit.
(SR1) 0

|
Interrupt STATUS 7, 1 clears interrupt.
oceurs

State-initiated interrupt
(TA,CA,LA)

True

State

False —\

7_

State first becomes True. |

, :
Mask | }
(CR1) / ' !
0 ! l

[

|

State again becomes True. (never went False)

i New Mask written
I'but not 01 transition.

| New Mask written
I gives 0—>1 transition.

Interrupt
(SR1)

STATUS STATUS \ STATUS

Interrupt Interrupt Interrupt
occurs occurs occurs

Using the HP-IB Interface

SRQ interrupt

True
SRQ
False ‘
1 .
| i
Mask } | |
(CR1) || New Mask written is not |
. i a 0-1 transition /J:
‘ | but produces interrupt.” |
1
Interrupt
(SR1)
Interrupt STATUS " Interrupt STATUS
occurs occurs
SR2: HP-IB Control Lines

A bit when set indicates that the corresponding HP-IB control line is TRUE.

SR3:

HP-IB Data Lines

A bit when set indicates that the corresponding HP-IB data line is TRUE.

SR4:

SRS:

HP-IB Address/ System Controller Switches

Bits O through 4 indicate the current setting of the HP-IB address switches of the interface. These are
factory set to 21.

Bit 5 indicates the setting of the system controller switch of the interface. A 1 indicates system

controller.

Bits 6 and 7 are always 0.

HP-IB State Register

This register indicates current HP-IB status of the 82937A Interface.

Bit O when set indicates that the interface is in a local lockout state (LLO).
Bit 1 when set indicates that the interface is in a remote state (REN).

Bit 2 when set indicates that a parity error occurred on input while parity was enabled. It is cleared

when RS is read.

Bit 3 when set indicates that SPE (serial poll enable) has been received. It is cleared when SPD (serial
poll disable) is received.

Bit 4 when set indicates that the interface is addressed to talk (TA or talker active).
Bit 5 when set indicates that the interface is active controller (CA or controller active).
Bit 6 when set indicates that the interface is addressed to listen (LA or listener active).

Bit 7 when set indicates that the interface is system controller (same as SR4 bit 5).

119

120 Using the HP-IB Interface

SR6: Secondary Command Register

e Bits 0 through 4 indicate the last secondary command received when the secondary command bit (Bit 0) ‘
of CRI1 is set. The SR6 register contains any secondary command that follows the interfaces talk or

listen address.

e Bits 5 through 7 are always 0.

Mnemonic Conventions

The following conventions are used to document the HP-IB control sequences that are used to implement bus

functions.

ATN: Attention (ATN) TRUE

"ATN: Attention (ATN) FALSE

(CA): Controller Active State

(CR): Carriage Return

(data): One or more data bytes.

(DCL): Device Clear

(GET): Group Execute Trigger

(GTL): Go To Local

(LA): Listener Active State

(LAG): Listen Address Group (listen addresses of specified devices
(LF): Line Feed

(LLO): Local Lockout

(MLA): My Listen Address (listen address of HP85)
{MTA): My Talk Address (talk address of HP85)
(PPC): Parallel Poll Configure

(PPU): Parallel Poll Unconfigure

(SC): System Controller

(SCG): Secondary Command Group

(SDC): Selected Device Clear

(SPD): Serial Poll Disable

(SPE): Serial Poll Enable

(TA): Talker Active State

(TAD): Talk Address (talk address of specified device)
(TCT): Take Control

(UNT): Untalk

(=6 us). Time span slightly greater than 6 microseconds

Message Concepts

Devices which communicate along the interface bus are transferring quant
of information can be from one device to another device, or from one devig
quantities of information can easily be thought of as ‘‘messages.”’

ities of information. The transfer ‘
¢ to more than one device. These

Using the HP-IB Interface

‘ In turn, the messages can be classified into twelve types. The HP-85A Desktop Computer is capable of

implementing all twelve of the interface messages. The list below gives the twelve message types for the
HP-IB.

10.

11.

12.

. The Data Message. This is the actual information which is sent from one talker to one or more listeners

along the interface bus.

. The Trigger Message. This message causes the listening device(s) to perform a device-dependent

action when addressed.

. The Clear Message. This message causes either the listening device(s) or all of the devices on the bus to

return to their predefined device-dependent states.

. The Remote Message. This message causes listening devices to switch from local front-panel control to

remote program control when addressed to listen.

. The Local Message. This message clears the Remote Message from the listening device(s) and returns

the device(s) to local front-panel control

. The Local Lockout Message. This message prevents a device operator from manually inhibiting remote

program control.

. The Clear Lockout/Local Message. This message causes all devices on the bus to be removed from

Local Lockout and revert to Local. This message also clears the Remote Message for all devices on the
bus.

4

. The Require Service Message. A device can send this message at any time to signify that the device

needs some type of interaction with the controller. This message is cleared by sending the device’s
Status Byte Message if the device no longer requires service.

The Status Byte Message. A byte that represents the status of a single device on the bus. Bit 6 indicates
whether the device sent a Require Service Message, and the remaining bits indicate operational condi-
tions defined by the device. This byte is sent from a talking device in response to a serial poll operation
performed by a controller.

The Status Bit Message. A byte that represents the operational conditions of a group of devices on the
bus. Each device responds on a particular bit of the byte thus identifying a device-dependent condition.
This bit is typically sent by devices in response to a parallel poll operation.

The Status Bit Message can also be used by a controller to specify the particular bit and logic level that
a device will respond with when a parallel poll operation is performed. Thus more than one device can
respond on the same bit.

The Pass Control Message. This transfers the bus management responsibilities from the active control-
ler to another controller.

The Abort Message. The system controller sends this message to unconditionally assume control of the
bus from the active controller. This message terminates all bus communications (but does not imple-
ment a Clear Message).

These messages represent the full implementation of all HP-IB system capabilities. Each device in a
system may be designed to use only the messages that are applicable to its purpose in the system. It is
important for you to be aware of the HP-IB functions implemented on each device in your HP-IB
system to ensure the operational compatibility of the system.

121

122 Using the HP-IB interface

HP-IB Control Lines

The figure below shows the meanings given to the eight control lines that 1
lines are designated as the ‘‘handshake’’ lines and are used to control the
that the talker does not get ahead of the listener(s). The three handshake 1

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

Using these lines, a typical data exchange would proceed as follows. Al
active listeners would indicate (via the NRFD line) when they are ready fi
pull this line low (ground), while a device that is ready would let the line
passive high, this line will stay low until all active listeners are ready for d
places the next data byte on the data lines and then pulls DAV low.
information on the data lines is valid and that they may read it. Each listen:

make up the HP-IB. Three of these
timing of data byte exchanges so
ines are:

Il devices currently designated as
or data. A device not ready would
float high. Since a low overrides a
ata. When the talker senses this, it
This tells the listeners that the
er (at its own speed) then takes the

data and lets the NDAC line go high. Again, only when all listeners have|let NDAC go high will the talker
sense that all listeners have read the data. It can then remove DAV (let it go high) and start the entire

sequence over again for the next byte of data.

Able to talk, listen,
and control
- Data Bus
(e.g., HP85) ()“
(8 signal lines)
DEVICE B
Able to talk and
listen
Data Byte Transfer
(e.g., 3437A digital voltmeter) C—--L Control A
-7 (3 signal lines)
DEVICE C
Only able to listen
General Interface
(e.g., 8660C signal generator) (f""L Management n
NARE | (5 signal lines)
DEVICE D
Only able to talk
| DIO1.8
(e.g., 2748B tape reader) . DAV
NRFD
NDAC
IFC
—— ATN
SRQ
REN
EOI

HP-IB Signal Lines

HANDSHAKE) Lines

anagement (CONTROL) Lines

Using the HP-IB Interface

ATN (Attention)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are distinguished from
normal data characters by the setting of the attention (ATN) line. That is, when the ATN line is false, bytes
on the dat‘a lines are interpreted as simple data characters. But when the ATN line is true, the data lines
become the carriers of command information. The set of 128 ASCII characters that can be placed on the data
lines during this ATN-true mode are divided into four classes as shown on the inside back cover.

IFC (Interface Clear)

Only the hardwired system controller can set the IFC line True. By asserting IFC, all bus activity is
unconditionally terminated, the system controller regains (if it has been passed to another device) the status
of active controller, and any current talker and listeners become unaddressed. Normally, this line is only used
to abort an unwanted operation, or to allow the system controller to regain control of a bus where something
has gone wrong. It overrides any other activity that is currently taking place on the bus.

REN (Remote Enable)

This line is used to allow instruments on the bus to be programmed remotely by another device on the bus,
usually (but not necessarily) the active controller. Any device that is addressed to listen while REN is True is
placed in the REMOTE mode of operation.

EO! (End or Identify)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are terminatd by the
ASCII line-feed character (LF = decimal 10). A device (e.g., a disk) may wish to send blocks of information
in 8-bit bytes which represent general binary patterns; and no specific 8-bit pattern can be designated as a
terminating character since it could occur anywhere in the data stream. In this case, the EOI line is used to
mark the end of the data message. When the listeners detect that the EOI line is True, they recognize that the
byte on the data lines is the last one of the data message.

The EOI line is also used during an identify (parallel poll) sequence.

SRQ (Service Request)

The active controller is always in charge of the order of events on the HP-IB. If a device on the bus has some
information of which the controller should be aware, it can use the service request line to ask for the
controller’s attention. For example, a printer might request service to inform the controller that it is out of
paper. Or a digitizer might assert service request to tell the controller that its sample button was pressed by
the operator and a reading is ready to be taken. This represents a request (NOT a demand), and it is up to the
controller when and how it will service that device. However, the device will continue to assert SRQ until it
has been satisfied. Exactly what will satisfy a service request depends on each individual device and will be
contained in the operating manual for that device.

123

124 Using the HP-IB Interface

SC (System Controller) ‘

There is one and only one special device on the bus known as the system controller. This capability is
established by the hardware of the device itself (usually by the setting of a slide switch or a jumper) so that
when power is turned on or the bus is reset, the device set to be the system controller will also assume the role
of the active controller. At any time, the current active controller may pass control to any other device on the
bus that is capable of performing the functions of a controller. (All devices are not required to have this
capability.) The role of system controller, however, stays with the device which is physically set for that
function and cannot be passed off. At any time when the system controller determines that something has
gone wrong with the normal bus operations, it can reset the bus (by asserting IFC) and get back active
control.

HP-IB Limitations

Before leaving this brief overview of the HP-IB, some of the limitations of the HP-IB should be considered.
The first limitation is that a maximum of 15 devices may be connected together by one HP-IB. This limitation
arises from electrical specifications for the line driver and receiver circuits , and how much current they can

provide or sink. Another limitation is that the total cable length connecting all of the instruments on one bus
cannot exceed 20 meters in length. Voltage levels on the various lines do not change instantaneously, but
require a certain amount of time proportional to the length of the cable. A limit is placed on the cable length
to insure that the bus will operate properly at its rated maximum speed. In general, then, the HP-IB is

intended to provide a simple means of interconnecting local instrumentation clusters. Other means of
interfacing (such as serial I/O) are better suited to long distance communications.

Using the HP-IB Interface

HP-IB Control Responses

The following table shows the responses of the 82937A Interface when it receives the various bus control

messages.

ATN: Interprets bus data as commands. The Interface can still interact with
computer while receiving commands.

IFC: Clears all talker and listener states to the power-on state. May release
Active Control unless also System Controller.

REN: Sets bit 1 of SRS.

EOIL: Terminates data input transfer to a buffer. Can terminate ENTER or
TRANSFER statement.

SRQ: Sets the service request bit (bit 3 of SR1) and interrupt if bit 3 of
interrupt mask is set.

DCL, SDC: Can interrupt the computer if bit 2 of CR1 is set.

GTL, LLO: Set appropriate bits in SR5.

GET: Can interrupt the computer if bit 1 of CR1 is set.

Serial poll: Delivers the currently set serial poll response byte (REQUEST) with-
out computer intervention.

Parallel poll: Responds to a parallel poll using the line and sense set by the switches
on the card if asserting SRQ.

PPU, PPC: Parallel poll response is switch settable and not programmable. No
response. '

TCT: Assumes active control of the HP-IB.

125

126 Using the HP-1B Interface

HP-IB Universal Commands (ATN true) ' .

The table below documents the decimal value of the HP-IB interface messages. Also shown are the numeric
ranges for Address and Command Groups.

Decimal ASCII Interface
Value Character Message Description
0 NUL
1 SOH GTL Got To Local
2 STX
3 ETX
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
6 ACK
7 BEL
8 BS GET Group Execute Trigger
9 HT TCT Take Control
10 LF
11 vT
12 FF
_ 13 CR
8 14 SO
o 15 Si
= 16 DLE
° 17 DC1 LLO Local Lockout
o 18 DC2
2 19 DC3
g 20 DC4 DCL Device Clear
g 21 NAK PPU Parallel Poll Unconfigure
&) 22 SYN
g 23 ETB
£ 24 CAN SPE Serial Poll Enable
& 25 EM SPD Serial Poll Disable
26 SuB
27 ESC
28 FS
29 GS
30 - RS
31 us
32-62 SPto > LAG Listen Address Group
(Numbers, special char)
63 ? UNL Unlisten
64-94 @to> TAG Talk Address Group
(Upper case ASCII)
95 — UNT Untalk
96-126 (lowercase ASCII) SCG Secondary Command Group
127 DEL

Available Bus Addresses and Codes

Using the HP-IB Interface

Address Switch Settings

Address Characters
Listen Talk
SP @
! A
” B
C
$ D
% E
& F
’ G
(H
) |
* J
+ K
, L
- M
. N
/ (0]
0 P
1 Q
2 R
3 S
4 T
5 U
6 \
7 w
8 X
9 Y
: Z
; [
< /
=]
> A

G @4 ¢ @ m

S Hd e ad il A dd a2 A2 000000000000 0C0OC0QCCO

-k ek - = 2 2 00000000 = -tk ik k= = ODO0OO0ODOODOOO
- =L =2 0000 = =4 2w O000 = = @ w0000 =2 a 20000
00+~ 200 = -wO0==- 002004 =002200—~-00
O+ 0+~ 01202020+~ 0 -0+~ 0 20001202 0—-+-0=20

Address Codes
Decimal Octal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20
17 21
18 22
19 23
20 24
21 25
22 26
23 27
24 30
25 31
26 32
27 33
28 34
29 35
30 36

~4— Praset

127

128 Using the HP-1B Interface

HP-IB Statement Summary ‘

The following table summarizes the Interface conditions that must be met for a given Interface state and
Program statement, and the resultant actions that are performed.

Given Additional
current required
state(s) conditions Actions Performed
Statement of: are: (Bus sequences are in color)
ABORTIO 7 SC none IFC,assumes active control.
_ [IFC]
SC & CA none MTA, leaves ATN true.
. [ATN ¢ MTA]
SC&CA none Terminates I/O operation.
[No sequence generated]
ASSERT 7;X any none Immediate write to CR2. IFC is
not asserted.
CLEAR 701 CA none Addressing performed, then

send SDC to device 01.
[ATN ¢ UNL,MTA,LAG,SDC]
CLEAR 7 CA none No addressing. Send DCL

(Note: ATN remains true; user may
use RESUME 7 to set ATN false.)

[ATN ¢ DCL]
CONTROL 7,n;X any none Writes X to CRn when interface
becomes non-busy.
ENABLE INTR 7;X any none Writes X to CR1 when interface
becomes non-busy.
ENTER 705;X CA none Device 05|is addressed to talk

HP-85 is addressed to listen,
data is input to X.
[See ENTER sequence table]

ENTER 7;X CA LA Inputs data to X.
[No sequence generated]
CA wait for LA Waits until addressed to

listen then|inputs data to X.
[No sequence generated]

HALT 7 any none Terminates 1/O operation.
[No sequence generated]
LOCAL 7 SC none REN is set false.
[REN]

LOCAL 701 CA none Addressing is performed, then
GTL is sent. Note: ATN remains
true. User may use RESUME 7 to
set ATN false.

[ATN e UNL,MTA,LAG,GTL]

LOCAL LOCKOUT 7 CA none LLO is sent.
[ATN ¢ LLO]

Using the HP-1B Interface

OUTPUT 705;X

OUTPUT 7;X

PASS CONTROL 715

PASS CONTROL 7
PPOLL (7)
REMOTE 7

REMOTE 701

REQUEST 7;X

RESET 7

RESUME 7

SEND 7;commands
SEND 7;data
SPOLL (7)

SPOLL (724)

STATUS 7,n;X
TRIGGER 7

TRIGGER 701

CA

CA

CA

CA

CA

SC

SC

any

CA

CA

any

CA

CA

any

CA

CA

none

TA

wait fo‘r TA

none

none
none
none

none

none

none

none
none
TA
LA

none

none
none

none

HP-85 is addressed to talk,
device 05 is addressed to
listen, data X is sent.

[See OUTPUT sequence table]

Outputs data X.
[No sequence generated]

Waits until addressed to talk,
then outputs data X.
[No sequence generated]

Device 15 is addressed to talk
then TCT is sent.
[ATN ¢ UNL,MLA, TAG,UNL,TCT,ATN]

No addressing. Send TCT.
[ATN ¢ UNL,TCT,ATN]

Sends IDY (ldentify).
[ATN e EOI,(>6us),ATN ¢ EOI]

REN is set true.
[REN]

REN is set true, then device
01 is addressed. Note: ATN is
left true.

[REN,ATN ¢ UNL,MTA,LAG]

if bit 6 of Xis =1 then SRQ

is set true. The HP-85 then
sends X in response to a serial
poll and drops SRQ if set.

Sets the HP-IB interface to
its power-on state. If system
controller, then IFC is
asserted and REN is turned
off then on again.

Sets ATN false.

[ATN]

Sends specified commands with
ATN true. ATN is left true.

Sends specified data with ATN
false. ATN is left false.

Conducts a serial poll.
[ATN e SPE,ATN,<data>,ATN ¢ SPD,UNT]

Addresses device 724 to talk

then conducts serial poll.

[ATN ¢ UNL,MLA,TAG,SPE,ATN, <data>,
ATN e SPD,UNT]

Sets X to the value of SRn.
Sends GET.
[ATN e GET]

Addresses device 01, sends
GET. Note ATN is left true.
[ATN ¢ UNL,MTA,LAG,GET]

129

130 Using the HP-IB Interface

HP-IB Errors

Error #
111

113

114

115

116

117

Meaning

A STATUS or CONTROL statement was executed with a non-valid

register number specified.

Only status registers SRO-SR6, control registers CRO-CR3, and con-
trol registers CR16-CR23 may be specified.

The statement executed requires that the HP-85 be the system control-

ler.

The statement executed requires that the HP-85 be the current active

controller.

The statement executed requires tha

the HP-85 be addressed-to-talk.

A possible cause for this error is that an OUTPUT (sc) statement was
executed while the HP-85 was active controller but not addressed to
talk. (You executed OUTPUT 7;X but the HP-85 was not previously

addressed to talk.)

The statement executed requires t
listen.

at the HP-85 be addressed-to-

A possible cause for this error is that an ENTER (sc) statement was

executed while the HP-85 was active controller but not addressed to
listen. (You executed ENTER 7;X but the HP-85 was not previously

addressed to listen.)

The statement executed requires that

the HP-85 be non-controller.

A probable cause of this error is that a REQUEST statement was

executed by the HP-85 while active controller.

Section 13
Using the Serial Interface

Section Introduction

The HP 82939A Serial I/O Interface enables your HP-85 computer to communicate with a variety of devices
that are configured for serial communication. These devices can range from simple serial printers to large-
scale computers.

This section of the manual explains how to program the Serial I/O Interface to communicate with these
devices. The subjects presented are:

e Introduction to Serial Interfacing

e Printer and Terminal Interfacing

e Advanced Serial Interfacing

e Registers

e Troubleshooting Hints
All discussions in this section assume the following factory preset defaults:

e Interface select code = 10

e Character specification = 7 bits/character, odd parity, 1 stop bit.
e Transfer Rate = 300 Baud.

e Auto-handshake = disabled (off).

The 82939A Interface Installation and Theory of Operation Manual explains:

e How to set the interface select code.
e How to set the interface default switches.

e How to install the interface in your HP-85.

You should read and understand these parts of the Installation and Theory of Operation Manual before
proceeding with this section.

131

132 The Serial Interface

Introduction to Serial Interfacing

This topic explains serial 1/O concepts and provides simple descriptions
printer and teletype discussions.

s of the terms that are used in the

Serial I/O simply means the transmission of data, one bit after another, over a line. Contrast this with parallel
I/O, which transfers eight or more data bits simultaneously. Each methad of data transmission has unique

advantages and disadvantages. Parallel I/O can transfer eight or more data

bits at a time but requires one wire

(or line) for each bit and and one ground (or common) wire. Serial 1/O transfers data one bit at a time but only

requires one wire for the data and one wire for the ground. The cost an
prohibitive when considering communication over distances greater th

d logistics of parallel I/O become
an 50 feet. Serial I/O allows for

inexpensive long-distance communication through use of an existing telephone system,

Equipment Configuration

Serial I/O devices are described according to the functions that they perform. These functional descriptions

are: Data Terminal Equipment, and Data Communications Equipment.

Data Terminal Equipment

Data Terminal Equipment (DTE) is any location in a network where information can enter or exit. Items

included as DTE are;

o The remote terminal.
e The remote terminal interface.
e The host computer.

e The host computer interface.

The 82939A Option 001 interface configures the HP-85 as a DTE device. The following drawings show a

typical DTE configuration for the HP-85.

Data Data

Modem Terminal Modem

82939A Option 001

Channel Channel

Data Communications Equipment

HP-85

Data Communications Equipment (DCE) is the equipment used to convey information between locations.

Items included as DCE are:

e The modems.
e The modem interfaces.

o The link (e.g., telephone lines).

The 82939A Standard interface configures the HP-85 as a DCE device. The following drawings show a

typical DCE configuration for the HP-85.

The Serial Interface 133

82939A Standard

Data Channel

Modem Terminal Terminal
HP-85

Asynchronous Data Transmission

The HP 82939A Interface communicates asynchronously with external devices. Asynchronous communica-
tion means simply that each character is sent over the line (or link) with synchronization built into the
character. The next drawing shows typical asynchronous transmission of characters.

Character Definition

NNNANANN

NN

M
S
B

/ Actual Character \Y\ Stop bit(s)

(character length = 7)

wwr
o

NONNNNNANN
NONNNNANNN
onr

Start bit —

Parity bit
(Optional)

~at——— Data Direction

The actual data is transmitted over the line using two voltage levels to represent the two possible states of a
binary digit. The following table shows the two binary states and the voltage levels assigned to each state.

Binary State: logic 0 logic 1
Voltage Range: +3Vito +25V | —3Vto —25V
Level Name: SPACE MARK
Line State: high low (idle)

When data is not being transmitted, the line is held in the low (or mark) state. When the transmitting device
has data to send, it places the line in the high (space) state for one bit time. This change to the high state for
one bit time is called the start bit. The remaining digital data is then transmitted to the receiving device. The
following drawing shows how a typical character (an ASCII ‘‘E’’) is transmitted over the link.

Character Transmission

Start
bit
_— ‘
Line in idle 1 0 1 0 0 0 1 P gittop
state (mark) '\~(Ieast significant bit)

~¢—ee Data Direction

134 The Serial Interface

The previous drawings show characters that consist of a start bit, the actua

1 ASCII character, a parity bit, and

a stop bit. The meaning of each of these parts of the character is explained next.

Start Bit

The start bit is inserted at the beginning of the character by the interface

The start bit is used to signal the

receiving device that the transmission of a character is starting. When the start bit is detected, the receiver

starts its internal clock to synchronize the receiver to the input data.

Data Character

The character is the binary bit-pattern of the actual transmitted character.
010 is transmitted for the ASCII *“2’’ character. Assuming that the rece
interprets the bit pattern as a <2,

For example, the bit pattern 0 110
civer expects ASCII characters, it

Note that the ASCII code is made up of seven bits. Other codes may be made up of five, six, or eight bits.

The interface provides a ‘‘character length’’ specification to define th

¢ number of bits that make up a

character. This ‘‘character length’” specification does NOT include start, stop, or parity bits. The factory

setting for the reset default switches specifies seven bit character length. S
about character length.
Parity

Parity provides a method of error checking. The parity bit (if specified)
parity bit is added when parity is not specified (parity = none). The parity

ce Register 4 for further discussion

always follows the character. No
bitis always a ‘‘1’’ when parity =

1is specified, and the parity bit is always a *“0’” when parity = 0 is specified. Parity = even and parity = odd

specify that the parity bit is determined as shown next.

Number of
“1” Bits In Character Parity Specified | Parity Bit
Odd Odd 0
Even Odd 1
Odd Even 1
Even Even 0

For example, the bit pattern for the ASCIT ‘‘2”’ character is 0 110 010.| There are three ““1’’ bits in this
pattern. If odd parity is specified, the parity bit is *‘0”’. If even parity is specified, the parity bitis ‘1’’. The

factory setting for the reset default switches specifies odd parity. See Register 4 for further discussion of

parity.

Stop Bits
Stop bits are added following the parity bit by the interface. The stop bits

are not really bits. The transmitter

holds the line in the ‘‘idle”” state for the amount of bit times specified by the stop bits parameter. This amount
of bit times is referred to as stop bits. Allowable stop bits parameters are 1 and 2. The factory setting for the
reset default switches specifies one stop bit. See Register 4 for further disgussion of stop bits.

The Serial Interface 135

Transfer Rates (or Baud)

When two devices are communicating, they must transfer and receive information at compatible data rates. If
the transmitter sends data at a faster rate than the receiver is expecting the data, information will be lost.
Most devices (such as printers) provide a switch to select the data rate. The serial I/O interface provides
programmable data rates and a switch selectable default data rate (see Control Register 3).

Handshakes

Handshakes are used to communicate status information from one device to another. The handshakes are
used to indicate a buffer full condition, received data errors, and modem status. Some devices use modem
lines to indicate an input buffer full condition (see Printer Interfacing). Other types of handshake protocols
(DC1/DC3 and ENQ/ACK) are explained in the Advanced Serial Interfacing topic.

Printer and Terminal Interfacing

This topic explains how to connect the HP-85 to a printer or teletype in order to produce hard-copy output and
to a terminal to input data. Example programs are shown for typical applications.

Printer Interfacing

Interfacing to a printer is not difficult if you first determine the printer’s requirements. Interfacing informa-
tion can be found in the owner’s or operator’s manual supplied with the printer. Look for key information that

may be listed as:

e Technical Data

e Technical Specifications

e Performance Specifications
e Transfer Rates

o Baud Rates

o Character Set

e Interfacing Diagrams

e Handshake

136 The Serial Interface

Example 1 (Printer)

As example, let’s assume that the following information is obtained from| the owner’s manual supplied with
your printer:

e Character Set - Asynchronous bit serial. Seven data bits and one parity bit or eight data bits and no

parity. The eighth bit is ignored. The printer accepts one or two stop bits. Full 96-character ASCII
coding.

e Serial Baud Rate - Switch selectable rates of 110, 300, 600, and 1200 bits per second.

e Handshake - The printer generates the Data Terminal Ready signal to regulate Received Data input and
prevent input buffer overflow. When the input buffer is full, the Data Terminal Ready signal is
dropped. This prevents further data transfer until the printer input buffer can accept more data from the
computer.

o Interfacing - The following diagrams show the connections for Data Terminal Equipment (DTE) and
Data Communications Equipment (DCE) configurations.

Here’s how the printer is interfaced with the HP-85:

Printer to Standard Interface

82939A Standard

Printer

When connecting this printer to the 82939A Option 001 interface, the following adapter cable must be used.

Printer to Option 001 Interface

5 Clearto Send 20/ B

3 Transmitted Data 2
o
o -
Cable to HP-85 o 1 Protective Ground 1 o
-

I
|
'
|
|
|
I
|
[
|
! 7 Signal Ground 7 Back of Printer
!
|
|
|
|
|
|
}
!
[

25 Pin Female Connector ‘S

Option 001 Cable Printer Jack
(Male) (Male)

The Serial Interface 137

Let’s use the data that we have collected thus far. The interface is preset at the factory to the following default
values:

o Interface select code = 10

e Transfer rate = 300 baud

e Autohandshake = Off

o Character length = 7

e Parity = Odd

e Stopbits=1

If we compare the requirements of the printer with the defaults provided by the interface, we see that the
printer baud rate must be set to 300, and the interface autohandshake feature must be enabled.

This example shows the simple programming steps that enable the HP-85 to send data to the printer.

Set the printer Baud Rate Switch to the 300! baud position.
Key the following program into your HP-85

MLIMEEER i
HLIF
HLILE
LI
FLIT
FLTE
FLIME
ML
FLI
ML
HLIFE

1 The example shown here uses default values provided by the serial /O interface whenever possible. Since the printer uses a handshake to prevent
buffer overrun, the baud rate can be set to maximum rate allowed by the printer (in this case 1200) to obtain maximum throughput.

138 The Serial Interface

You should note that many commercial printers have a female output conng
a DTE (male) device. This configuration must be changed when the 82939
and 3 on the interface cable or on the printer connector must be interc
implements these wiring changes. Order Hewlett Packard P/N 8120-3097

Example 1 implements the auto-handshake feature provided by the inte
‘‘Enquire/Acknowledge’’ and XON/XOFF may be used. See Advanced S
of these handshakes.

Terminal Interface

The 82939A Standard interface is supplied with a 25-pin female EIA co
used to connect to a terminal. Check the owner’s manual supplied with the
as baud rate, character set, interfacing diagrams, and technical specific
half/full duplex switch. The serial I/O interface can operate in either half
terminals usually require that their transmitted data be echoed by the h
simply retransmits each received character back to the terminal. This retrs
provides the terminal operator with a visual indication of the data that was
Register 9, bit 1 for a description of the auto-echo feature.

Example 2 (Terminal)

Here’s how to interface with a terminal. Let’s assume that the following
owner’s manual supplied with your terminal:

e Character Set - Asynchronous bit serial; 1 start bit with 7 data bits, o

96-character ASCII coding.

Duplex - Switch selectable half and full-duplex operation.

XOFF handshake details).

The terminal transmits a line-feed character as its output end-of-line

Here’s how to interface the terminal with the HP-85:

Set the terminal switches as follows. Baud Rate = 300, Duplex = Full. T

interface specify 300 Baud, and seven bit ASCII characters with odd parity

Serial Baud Rate - Switch selectable rates of 110, 300, 600, and 120

The terminal requires a DC1, CHR$(17), prompt from the remote dev

The terminal requires a carriage-return/line-feed as its input end-of-1

ector, but the connector is wired as

A option 001 cable is used. Pins 2

hanged. A cable is available that

rface. Other handshakes such as

erial Interfacing for a explanation

nnector. The standard interface is
terminal for key information such
ations. Most terminals provide a
or full duplex mode. Full duplex
0st computer. The host computer
ansmission (or echo) of characters
y transmitted to the computer. See

information is obtained from the

dd parity and 1 or 2 stop bits. Full

0 bits per second.

Handshake - The terminal uses XON/XOFF handshake (see Advanced Serial Interfacing for XON/

ice in order to begin transmitting.

terminator.

ine terminator.

he reset defaults for the serial I/O
/. The only interface card specifi-

cations that must be programmed are: enable the auto-echo feature, and implement the XON/XOFF hand-

shake protocol. The following program shows how to set up the interface to

communicate with the terminal.

The Serial Interface 139

. Key the following program into your HP-85.

Line 30 - Activates Transmitter Flag Enable/Disable feature and specifies Control Register 12 character as an
input termination character. Line 30 also sets the value 13 (for Line-Feed) to register 12.

Line 40 - Sets the value 17 (DC1) to register 14 and the value 19 (DC3) to register 15. These characters
control the Transmitter Flag Enable/Disable feature.

. Line 60 - Enters the data from the terminal. The *‘%,%K”’ image specifier allows the entry into A$ to be
terminated by an ‘‘EOI’’. This interface generates an ‘‘EOI’’ type signal when the character
defined by register 12 is detected in the incoming data.

Line 80 through Line 110 - Interprets the Backspace character.

You can now enter data from thc: terminal.

Teletype Interface

The 82939A Option 002 interface is supplied with an unterminated cable for use with a teletype device. See
the Installation and Theory of Operation Manual for a description of the Option 002 cable. Most teletypes use
a 20 milliamp current loop-mode for data transfer. The interface provides 20 milliamp drivers for current

loop operation. Most teletypes are configured as shown next:

e Data Rate - 110 baud
‘ e Character - 7 bits
e Parity - Even

e Stop bits - 2 stop bits

140 The Serial Interface

Example 3 (Teletype)

The following program transmits data to a teletype that is configured as shown:

Advanced Serial Interfacing

This topic explains advanced interfacing techniques. Items discussed include handshakes, modems, and long
distance communication over telephone links.

Handshakes

In the printer discussion, the printer used the Data Terminal Ready signal to indicate a buffer-full condition
to the HP-85. Other types of handshakes exist, as discussed here.

ENQuire/ACKnowledge

Some peripherals and host computer systems use the ENQuire/ ACKnowledge protocol for buffer-full or
not-ready indication. When the transmitting device sends a line of text to a receiver, an ENQuire character,
e.g., CHRS$(5), is also transmitted following the text. The transmitter waits for an ACKnowledge character,
e.g., CHR$(6), from the receiver before sending another line of text. The receiver responds with the
ACKnowledge response if the input data contained no errors and there is sufficient space in the input buffers
for at least one more line of text. This discussion uses the ASCII ENQ and ACK characters for the handshake
sequences. Other ASCII characters such as ENQ/ESC may be used for these sequences. The following
program lines show how to set Control Registers 11, 15, 16, and| 19 to implement the ENQuire/
ACKnowledge handshakes when the HP-85 is defined as the host.

XON/XOFF

Another handshake protocol used by some peripherals and host computer systems is the XON/XOFF hand-
shake (commonly referred to as the DC1/DC3 handshake). During data transfers, the receiver monitors its
sufficient space remaining in the input buffers, the receiver sends an XOFF (normally a DC3) to the

input buffers to ensure that-sufficient space remains for at least one mqre line of data. When there is not
receiver sends an XON (normally a

transmitter. The transmitter then suspends further transmission until the
DC1) to indicate that transmission may resume. The receiver sends the XON when sufficient buffer space

The Serial Interface 141

‘ becomes available for at least one more line of text. The following program lines show how set Control
Registers 11, 14, and 15 to implement XON/XOFF handshakes when the HP-85 is defined as the host.

FOR HOHHOFF

Note: When the HP-85 is configured as an input device (not as a host), you must implement the
ENQ/ACK or XON/XOFF handshake sequences to prevent overflowing the HP-85 buffers. The hand-

shakes must be implemented from the BASIC program.

Modems

The word MODEM is a contraction of the words MOdulator and DEModulator. A modem is a device that
changes digital information into audio tones for transmission over the existing telephone system and converts

received audio tones into digital information for input to the receiving device.. A modem is used to establish a

communication link using telephone lines, since digital data can only be transmitted over short distances with

direct point-to-point wiring. Also, the bit format of digital data is incompatible with long distance communi-

cation.

Modems utilize handshake signals to communicate with the device to which they are connected. The serial

I/O interface implements the following RS-232-C modem control signals:

Cable Pin Signal Name Function

1 Protective Ground Frame and ac power ground

2 Transmitted Data Output data sent by the DTE device
to the DCE device.

3 Received Data Input data detected by the DCE device.

4 Request to Send Indicates to the DCE device that the
DTE device is ready to transmit data.

5 Clear to Send Indicates to the DTE device that the
DCE device is ready to accept data.

6 Data Set Ready Indicates to the DTE device that the
DCE device is not in test mode and power
is on.

7 Signal Ground Establishes reference point between the
remote device and the terminal.

8 Data Carrier Detect Indicates to the DTE that the DCE
device is receiving carrier signals.

20 Data Terminal Ready | Indicates to the DCE that the DTE
device is ready to transfer data.

23 Data Signal Rate Selects one of two rates available on

Select two speed modems.

142 The Serial Interface

You can control and monitor these modem signals by accessing interface control and status registers. See
Registers, later in this section. ‘

The next drawings show typical handshake sequences that occur between a modem and a terminal. Half and
full-duplex handshakes are shown.

Establishing Full Duplex Connection

This drawing shows typical handshake sequences that occur when full duplex data transfers are implemented:

1 2 3 4
| | | |
| [!
l I I
Data Terminal Ready |) Il : :
| L |
Data Set Ready | I l f
l [|
Request To Send [: { I
I
[:
Clear To Send ’ | | |
[l
Data Carrier Detect |
1. Interface sets Data Terminal Ready and Request To Send (Register 2, bits 0 and 1).
2. Interface monitors Data Set Ready and Data Carrier Detect responses. These signals are monitored
from the program (Status Register 3, bits 1 and 3), or can be automatically monitored by the interface ‘

(Register 5, bits 1 and 3).

3. Interface monitors Clear To Send response. When Clear To Send becomes active (true), the interface
transmits the output data to the remote. This signal is monitored from the program (Status Register 3,
bit 0), or can be automatically monitored by the interface (Register|5, bits 0 and/or 4). The automatic
monitoring feature enables you to suspend transmission or execute an auto-disconnect if Clear To Send,
Data Set Ready, or Data Carrier Detect signals are lost. (goes false).

4. Auto disconnect for lost carrier.

The Serial Interface 143

Establishing Half Duplex Connection

This drawing shows typical handshake sequences that occur when half duplex data transfers are im-
plemented:

pry

5

Data Terminal Ready __—J

3 4 End of Transmission
(| ;

| |

! |

I T

| !

| |

| |

| |

|
| !
| I
I [
I |
| |
!
!

2
|
!
!
|
|
|
l
!
!
:
|
|

!
Data Set Ready | |
| J
Request To Send ! [l '
T | [! I
| f [——‘—I |
Clear To Send | L I

1. Interface sets Data Terminal Ready (Register 2, bit 0).
2. Interface monitors Data Set Ready response (Status Register 3, bit 1),
- 3. Interface sets Request To Send. Automatic control of this signal can be specified (Control Register 16,
bit 7).
4. Interface monitors Clear To Send response. When Clear To Send is active (true), the interface transmits

the output data. Automatic control of this handshake sequence can be specified (Register 10, bit 4).

5. Auto disconnect when Data Set Ready signal is lost.

The modem handshake sequences described here are for the Option 001 interface. Similar automatic signal
monitoring, auto-handshake and auto-disconnect features are provided for the Standard interface. See the
appropriate registers for an explanation of these features.

Note: Full duplex transfers can not be implemented using ENTER and OUTPUT statements. Use
interrupt TRANSFERSs instead. This allows the serial I/O interface to interrupt the HP-85 when there is
input data present, or to request data for transmission.

Auto-originate and Auto-answer Routines

This discussion shows typical auto-originate and auto-answer programming routines that are used when
connecting to a remote computer. These routines should be added to the main program used to communicate
with the remote computer. Contact your local HP-85 dealer or Sales and Service Office for information about
terminal emulator programs. '

144 The Serial Interface

Example 4 (Auto-originate)

The Serial Interface 145

146 The Serial interface

Registers .

The serial /O interface contains 24 distinct registers. These registers are accessed with STATUS or CON-
TROL statements. This discussion explains the contents of each register and shows the access procedures.

Register 0
To access this register execute:

STATUS 18,85

Register 0 is aread-only register. The value returned (always 2) indicates that this is the Serial I/O Interface.

Register 1
interrupt Mask
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DCD DSR CTS
Break Framing Parity Reg:;\;ed (Opt. 001) Aujﬂo- (Opt. 001) | (Opt. 001)
Received Error Error Available RTS disconnect DRS DTR
(Standard) (Standard) | Standard)
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 Value=4 | Value=2 | Value =1

To access this register execute:

1B .1 i <value>

Register 1 is a read/write register. The value contained in this register determines the conditions that cause an
interrupt to the HP-85. To specify interrupt conditions, execute the above CONTROL statement and specify
the bit value (or values) for the desired interrupts. The value remains in this register until the interface is reset
or until a new value is written to this register.

Reset default: 0 (all bits clear)

The Serial Interface 147

The meanings of the various bits are described next.

Bit 7 set indicates that an interrupt is generated when a BREAK is detected in the input data. A BREAK
is used to signal an interrupt to the remote device. A BREAK appears to the serial interface as a null
character, CHR$(0), and may cause parity and framing errors. Detecting a break may indicate that an
erroneous null character has been input along with other valid data.

Bit 6 set indicates that an interrupt is generated when a framing error is detected in the input data. A
framing error may be caused by line transients or incorrectly specified stop bits or character length. The
character that caused the framing error can be converted to a specific character if you desire (see
Register 9).

Bit 5 set indicates that an interrupt is generated when a parity error is detected in the input data. A parity
error may be caused by line transients or when parity is incorrectly specified (see Register 4). The
character that caused the parity error can be converted to a specific character if you so desire (see
Register 9).

Bit 4 set indicates that an interrupt is generated when there is received data in the interface input buffer.
The data is then entered with an ENTER or TRANSFER statement.

Bit 3 set indicates that the Data Carrier Detect (Option 001 cable) or Request To Send (Standard cable)
modem signal has changed state. Note that the interrupt is generated when the modem signal changes
from false to true or from true to false.

Bit 2 set indicates that an interrupt is generated when an auto-disconnect is activated. An auto-
disconnect is generated when specified modem signals are lost (see Register 5). Detecting an auto-
disconnect when bit 2 is clear (0) generates error 115.

Bit 1 set indicates that the Data Set Ready (Option 001 cable) or Data Rate Select (Standard cable)
modem signal has changed state. Note that the interrupt is generated when the modem signal changes
from false to true or from true to false.

Bit O set indicates that the Clear To Send (Option 001 cable) or Data Terminal Ready (Standard cable)
modem signal has changed state. Note that the interrupt is generated when the modem signal changes
from false to true or from true to false.

148 The Serial Interface

Register 2

Modem Control Signals ' ‘

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DRS RTS DTR
(Opt.|001) | (Opt. 001) (Opt. 001)

Not Used Not Used Not Used Not Used Not Used : .
DSR DCD CTS

(Standard) | (Standard) (Standard)

Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value = 1

To access this register execute:

.l <value>
LE G <value>

Register 2 is a read/write register. The value contained in this register controls the state of the interface
control signals shown here. The state of these control signals is returned when the STATUS statement is
executed. To change these signals, execute the above CONTROL or ASSERT statement and specify the bit
value (or values) to set the desired lines. Executing the ASSERT statement immediately sets the modem
signals as specified, regardless of any I/O operations that may be occuring. The value specified remains in
this register until the interface is reset or until a new value is written to this register.

Reset default: 0 (all bits clear)
The meanings of the various bits are described next.

e Bits 7 through 3 are not used.

e Bit 2 set activates the Data Rate Select (Option 001 cable) or Data Set Ready (Standard cable) modem
signal. To deactivate this signal, clear this bit (set to 0).

e Bit 1 set activates the Request To Send (Option 001 cable) or Data Carrier Detect (Standard cable)
modem signal. To deactivate this signal, clear this bit (set to 0).

e Bit O set activates the Data Terminal Ready (Option 001 cable) or Clear To Send (Standard cable)
modem signal. To deactivate this signal clear this bit (set to 0).

Control Register 3

To access this register execute:
COMTREOL 18,3 <value>

Control register 3 is a write-only register. The value contained in this register determines the baud rate for

transmitted and received data. This register selects STANDARD baud rates only. Non-standard baud rates
are specified by registers 6 and 7. To specify a standard baud rate, execute the above CONTROL statement

and specify the desired value as shown in the table below. The value remains in this register until the
interface is reset or until a new value is written to this register.

The Serial Interface 149

Reset default: 6 (300 baud)

Value |Rate Specified Value |Rate Specified
0 50 8 1200
1 75 9 1800
2 110 10 2000
3 134.5 11 2400
4 150 12 2600
5 200 13 4800
6 300 14 7200
7 600 15 9600

Status Register 3

Modem Status and Cable Option

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DCD DSR CTS
(Opt. 001) Cable (Opt. 001) | (Opt. 001)
Not Used Not Used Not Used Not Used Tyoe
RTS yp DRS DTR
(Standard) (Standard) | (Standard)

Value = 128| Value =64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

To access this register execute:

SETHTUS 16,3

Status register 3 is a read-only register. The value returned from this register indicates the status of the
specified modem signals and the type of cable installed on the interface.

Reset Default: None

The meanings of the various bits are described next.

e Bits 7 through 4 are not used.

e Bit 3 set indicates that the Data Carrier Detect (Option 001 cable) or Request To Send (Standard cable)
modem signal is active (true). Bit 3 clear (0) indicates an inactive modem signal.

e Bit 2 set indicates that the interface has the standard cable installed. Bit 2 (0) clear indicates an Option
001 cable.

e Bit 1 set indicates that the Data Set Ready (Option 001 cable) or Data Rate Select (Standard cable)
modem signal is active (true). Bit 1 clear (0) indicates an inactive modem signal.

e Bit O set indicates that the Clear To Send (Option 001 cable) or Data Terminal Ready (Standard cable)
modem signal is active (true). Bit O clear (0) indicates and inactive modem signal.

150 The Serial Interface

Register 4
Line Characteristics
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit|2 Bit 1 Bit 0
Set Force Odd/Even Enabie Stop
Not Used Break Parity Parity Parity Bits Character Length
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value =1

To access this register execute:

P
<value>

Register 4 is a read/write register. The value contained in this register specifies character length, stop bits,
parity, and forces a BREAK to be transmitted. To change these character definitions, execute the above
CONTROL statement and specify the bit value (or values) as desired. The value remains in this register until
the interface is reset or until a new value is written to this register. A BREAK is sent by setting bit 6 with a
CONTROL statement or by executing the REQUEST statement. The REQUEST statement causes the trans-
mit line to be held in the space condition for the amount of character times specified for the value
parameter, followed by holding the transmit line in the mark condition for at least 5 character times. When
using the CONTROL statement to set a BREAK, the line remains in the space condition until bit 6 is
cleared.

Reset default: 10 (seven bits, odd parity, one stop bit)
The meanings of the various bits are described next.

e Bit 7 is not used.

e Bit 6 set causes a BREAK signal to be output to the remote device. A BREAK forces the transmit line to
the space condition. The transmit line remains in the space condition|until bit 6 is cleared.

e Bits 5, 4, and 3 are defined in the following table.

Value Bits Parity Specified
5|4 |3
0 o(ofo No parity bit
8 0|01 Odd parity
24 of1/|1 Even parity
40 1101 Always 1
56 11111 Always 0

o Bit 2 set specifies two stop bits. Bit two clear (0) specifies one stop bit.

The Serial Interface 151

‘ e Bits 1 and O specify character length as shown in the following table:
it
Value 1B so Character Length
0 0|0 5
1 0|1 6
2 1(0 7
3 111 8

The next table shows how to select the value for the CONTROL statement to specify combinations of
character length, parity, and stop bits.

Bits/Character Parity Specifier
None | Odd | Even 1 0
5 0 8 24 40 56
6 1 9 25 41 57
7 2 10 26 42 58
8 3 11 27 43 59

For example, you want to select 7 bits per character, odd parity. From the table, you find the value 10
specifies this configuration. The statement required to specify this configuration is:

Note: The table shown above specifies 1 stop bit. To specify 2 stop bits, add 4 to the values found in
the table.

152 The Serial Interface

Register 5

Modem Features

Most Significant Bit Least Significant Bit -

Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
DCD DSR CTs
. . (Opt. 001) (Opt. 001) | (Opt. 001)
Not Used | Not Used H:fg:':‘;ie H;;ad“:h";';e Not Used
RTS DRS DTR
(Standard) (Standard) | (Standard)
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

To access this register execute:

Register 5 is a read/write register. The value contained in this register determines the auto-handshake and
auto-disconnect features that are specified. To change the specifications, execute the above CONTROL
statement and specify the bit value (or values) as desired. The value remains in this register until the interface
is reset or until a new value is written to this register. Note that bits 5 and 4 can also be controlled by the reset
defaults (see the Installation and Theory of Operation Manual). ‘

Reset default: 0 (all bits clear)

The meanings of the various bits are described next.

e Bits 7 and 6 are not used.

e Bit 5 set enables the receive auto-handshake feature. This feature discards received data and character
status information if the Data Carrier Detect (Option 001 cable) or Request To Send (Standard cable)
modem signals are inactive, Bit 5 clear (0) disables this feature.

e Bit 4 set enables the transmit auto-handshake feature. This feature suspends data transmission when
the Clear to Send (Option 001 cable) or Data Terminal Ready (Standard cable) modern signals are
inactive. Data transmission resumes when this bit is clear (0). See Printer Interfacing for an example

use of this feature.

e Bit 3 set enables the auto-disconnect feature. An auto-disconnect is generated when the Data Carrier
Detect (Option 001 cable) or Request To Send (Standard cable)| modem signal becomes inactive.
Auto-disconnect generates error 115 unless an interrupt is specified (see register 2, bit 2). Bit 3 clear
(0) disables this feature.

e Bit 2 is not used.

e Bit 1 set enables the auto-disconnect feature. An auto-disconnect is generated when the Data Set Ready
(Option 001 cable) or Data Rate Select (Standard cable) modem signal becomes inactive. Auto-

disconnect generates error 115 unless an interrupt is specified (see register 2, bit 2). Bit 1 clear (0)
disables this feature.

The Serial Interface 153

e Bit 0 set enables the auto-disconnect feature. An auto-disconnect is generated when the Clear To Send
(Option 001 cable) or Data Terminal Ready (Standard cable) modem signal becomes inactive. Auto-
disconnect generates error 115 unless an interrupt is specified (see register 2, bit 2). Bit 0 clear (0)
disables this feature.

Register 6

To access this register execute:

Register 7

To access this register execute:

STHTLS 18
COHTREOL 18,7 <value>

Registers 6 and 7 are read/write registers. The value contained in these registers indicates the value specified
for the transmit and receive data transfer rates. These registers are used to specify non-standard baud rates
(see register 3 for standard baud rate specifiers). The values for these registers are determined as follows:

1. Rate = 115 200/Divisor

2. Divisor = ((Register 6 value X 256) + (Register 7 value))

The default values for these two registers specify 300 baud (see register 3). These default values are 1 for
register 6and 128 for register 7. Entering these values in to step 2 we obtain the following results:

Divisor = ((1 X 256) + (128)) = 384
Rate = 115 200/384 = 300
To specify a non-standard baud rate, the values for registers 6 and 7 are determined as follows:
1. Divisor = 115 200/Rate

2. Register 7 value = (Divisor) MOD 256
3. Register 6 value = (Divisor) DIV 256

For example, you want to specify a baud rate of 275 bits per second. Calculate the register values as follows:

1. Divisor = 115 200/275 = 418
2. Register 7 value = (418) MOD 256 = 162
3. Register 6 value = (418) DIV 256 = 1

To specify a baud rate of 275 execute the following CONTROL statement to registers 6 and 7:

COMTROL 18,651 1ad

Reset defaults:

Register 6 = 1
Register 7 = 128

154 The Serial Interface

Register 8

To access this register execute:

STHTUS 18, 8;: 88

Register 8 is a read/write register. The value contained in this register|is the decimal value of the ASCII
character that is specified as the parity and framing error replacement character. When a parity or framing
error is detected in the input data, the character that contained the error can be replaced with the character in
this register. This feature is used to flag errors and simplify troubleshooting. This feature is enabled by Bit 4,
Register 9.

Reset default : 0 (all bits clear)

Register 9
Transmitter/Recelver Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Strip Strip Change Set Bit 7 Reset
TrE:sarg:ﬁer Received Received | Character lof Character| Receive Alg:;zf:o REe:ae?\'/:r
Rubouts Nulls if Error if Error Queue
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value =1

To access this register execute:

i <value>

Register 9 is a read/write register. This register is the primary control register for the interface transmitter and
receiver. The value contained in this register indicates the state of the various control signals. To change
these control signals, execute the above CONTROL statement and specify the bit value (or values) to activate
the desired control signals. The value remains in this register until the interface is reset or until a new value is
written to this register. Executing the RESUME statement immediately enables the transmitter (sets bit 7).
The RESUME statement may be executed concurrent with active transfers.

Reset default: 137 (bits 0, 3, and 7 set)

The Serial Interface 155

The meanings of the various bits are described next.

Bit 7 set enables the data transmitter. When bit 7 is clear, only echo data is transmitted (see bit 1). Bit 7
may be controlled by the XON/XOFF feature provided by Control Register 11.

Bit 6 set allows received rubout characters, CHR$(127), to be stripped from incoming data. This
feature is used when entering data from a device that sends extra rubout characters to avoid buffer
overruns. Bit 6 clear (0) disables this feature.

Bit 5 set allows received null characters, CHR$(0), to be stripped from incoming data. This feature is
used when entering data from a device that sends extra null characters to avoid buffer overruns. Bit 5
clear (0) disables this feature.

Bit 4 set enables replacement of characters received with parity or framing errors. The replacement
character is defined by register 8. Bit 4 clear (0) disables this feature.

Bit 3 set enables the underline feature for parity and framing errors. This feature is only valid when no)
replacement character is specified for register 8. This feature sets bit 7 of register 8. This bit set causes
all characters with parity or framing errors to be underlined when they are displayed on the internal
CRT or are printed on the internal printer. Bit 3 clear (0) disables this feature.

Bit 2 set clears the receive data queue. When the receive data queue is cleared, this bit is automatically
reset by the interface. All data in the receive queue is lost when this feature is activated. Ensure that
values written to this register are correct before you execute the CONTROL statement.

Bit 1 set enables the auto-echo feature. This feature causes all received characters to be retransmitted to
the sending device. Bit | clear (0) disables this feature.

Bit O set enables the receiver. All input data, including status, is entered into the interface input buffer.
Bit O clear (0) disables the receiver. All input data, including status and BREAK is ignored.

Control Register 10

Control register 10 is not implemented. Executing a CONTROL statement to this register generates error

166 The Serial Interface

Status Register 10

Most Significant Bit

Line Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
, Transmit . ; Received

Not Used | Not Used Register ReBézs/l; d Fr;rr:;?g Fée:::)t?/ Not Used Data
Empty Available
Value = 128/ Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value = 2 Value = 1

To access this register execute:

STATLEE 18, 18, 58

Status register 10 is a read-only register. The value contained in this register provides information about each

character as it is received. This status information is entered into the receive queue in synchronization with
each character.

Reset default: 0 (all bits clear)
The meanings of the various bits are described next.

e Bits 7 and 6 are not used.

e Bit 5 set indicates that the transmitter is ready to accept another character from the HP-85. This does
NOT mean that all data has been transmitted to the remote device. The data may still be in the interface
serial output register.

e Bit 4 set indicates that a BREAK from the remote has been detected

e Bit 3 set indicates that a framing error has been detected for at least one input character. Framing errors
usually indicate a line transient, an incorrect number of stop bits,
character.

br an incorrect number of bits per

e Bit 2 set indicates that a parity error has been detected for at least jone input character. Parity errors
indicate a line transient, an incorrect number of bits per character, or an incorrect parity specifier.

e Bit 11is not used.

e Bit O set indicates that received data is available in the input queue. The received data should be entered
into the HP-85.

Control Register 11

Most Significant Bit

Input Data Control

The Serial Interface

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T?:::rl'r?it TDr::sbtJneit Terminate | Terminate | Terminate | Terminate
Fla Fla Not Used if CR15 it CR14 if CR13 if CR12 Not Used
XOI% XOFgF (see CR15) | (see CR14) |(see CR13) |(see CR12)
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

To access this register execute:

COMTREOL 18, 115 <value>

This register specifies the input terminator character location. This register also provides control of the
transmitter enable flag when input terminator characters are detected. To specify the input terminator
character location, or to control the transmitter enable flag, execute the above CONTROL statement and
specify the bit values for the desired characters or flag state. The value remains in this register until the

interface is reset or until a new value is written to this register.

Reset default : O (all bits clear)

The meanings of the various bits are described next.

o Bit 7 set specifies that the transmitter enable flag is set when the character defined by Control Register

15 is detected in the input data stream (XON).

e Bit 6 set clears the transmitter enable when the character defined by Control Register 14 is detected in

the input data stream (XOFF).

e Bit 5is not used.

e Bit 4 set specifies that input operations are terminated when the character defined by Control Register

15 is detected in the input data stream.!

e Bit 3 set specifies that input operations are terminated when the character defined by Control Register

14 is detected in the input data stream.?

e Bit 2 set specifies that input operations are terminated when the character defined by Control Register

13 is detected in the input data stream.!

e Bit 1 set indicates that input operations are terminated when the character defined by Control Register

12 is detected in the input data stream.’

e Bit 0is not used.

1 Input operations can ONLY be terminated by these characters if the % image specifier is used.

157

158 The Serial Interface

Status Register 11

Most Significant Bit

1/0 Termination Cause

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 B‘t 2 Bit 1 Bit 0
End of End of Transfer CR15 CR14 CR13 CR12 DELIM
Output Input Count Character | Character | Character | Character Character

Data List Data List Expired Received | Received | Received | Received Received
Value = 128| Value = 64 | Value = 32 | Value = 16 Value=8 | Value=4 | Value=2 ‘ Value = 1

To access this register execute:

STHATUS 18, 11k

Status register 11 is a read-only register. The value returned from this
terminating an I/O operation. When multiple termination conditions are]
determine the I/O termination cause.

register indicates the reason for
specified, this register is read to

Reset default : 0 (all bits clear)
The meanings of the various bits are explained next.

® Bit 7 set indicates that the I/O operation was terminated by the HP-85 at the end of the output list.

® Bit 6 set indicates that the I/O operation was terminated by the HP-85 when the input list was filled.

¢ Bit 5 set indicates that the input TRANSFER operation was terminated by satisfying the COUNT
parameter.

® Bit 4 set indicates that the input operation was terminated when the character defined by Control

Register 15 was detected in the input data stream.

® Bit 3 set indicates that the input operation was terminated when the character defined by Control

Register 14 was detected in the input data stream.

¢ Bit 2 set indicates that the input operation was terminated when
Register 13 was detected in the input data stream.

the character defined by Control

® Bit 1 set indicates that the input operation was terminated when the character defined by Control

Register 12 was detected in the input data stream.

® Bit 0 set indicates that an input TRANSFER operation was terminated when the DELIM character was
detected in the input data stream.

Control Registers 12 through 15

Control Registers 12, 13, 14, and 15 contain the termination characters that|are specified by Control Register

11. The transmit enable flag is also controlled by the characters specified by Control Registers 14 an 15. To
define termination characters for these registers, execute a CONTROL statement to the desired register and
specify the decimal value of the ASCII character defined as the termination character.

The Serial Interface 1569

To access these registers execute:

=i <value>
|3 <value>
l <value>
% i <value>

Control Register 16
Output EOL Sequence

Most Significant Bit Least Significant Bit
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Auto EOL
RTS Transmit Six Bit EOL Character Count

Enable Disable
Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

To access this register execute:

CORTREOL LB 16 <value>

Control register 16 is a write-only register. This register contains the EOL sequence character count, the EOL
transmitter control, and the auto Request To Send enable. The EOL is a character or sequence of characters
that is output at the end of each line of data (e.g., CR/LF). To change the EOL character count or to enable
the auto Request To Send or EOL transmit disable, execute the above CONTROL and specify the bit value as
desired. The new value remains in this register until the interface is reset or until a new value is written to this
register.

Reset default: 2 (bit 1 set)

The meanings of the various bits are described next.

e Bit 7 set enables the auto Request To Send feature. This feature activates the Request To Send modem
signal at the beginning of each transmission. When the EOL sequence is transmitted (end of TRANS-
FER or OUTPUT statement) the Request To Send signal is set to the inactive state. Bit 7 clear disables
this feature.

e Bit 6 set clears the transmitter enable flég after all output data (including EOL sequences) has been
transmitted. This flag must be reenabled from the program or by detecting a special received character
(see Control Register 11) before transmission can resume. This feature is used with ENQuire/
ACKnowledge handshakes. Bit 6 clear (0) disables this feature.

e Bits 5 through 0 contain the EOL character count value. This value specifies how many characters are
defined for the EOL sequence. This value ranges from O through 63. Long EOL sequences are normally
used with slow printing devices such as teletypes to allow the print mechanism sufficient time to
execute a Carriage-Return/Line-Feed before sending more data from the interface. The characters that
make up the actual End Of Line sequence are contained in Control Registers 17 through 23. The EOL
character count parameter and the actual character sequences are explained following Control Registers
17 through 23.

160 The Serial Interface

Control Registers 17 through 23

Control Registers 17 through 23 contain the user defined output EOL

L sequence. You define the EOL

sequence by specifying a maximum of seven separate characters. The EOL characters are defined by

executing a CONTROL statement to the desired register and specifying
ASCII character.

To access these registers execute:

18,17 <value>
L& <value>
L <value>
i <value>
i <value>
i <value>
i <value>

Reset defaults;

Register 17 - CR (CHR$(13))
Register 18 - LF (CHR$(10))
Registers 19 through 23 - Null (CHR$(0))

The default value for Control Register 16 is 2. This specifies a two charactg
the default for Control Registers 17 and 18 mean that the default EOL
sequence definition is changed as shown next.

the decimal value of the desired

:r EOL sequence. This default and
sequence is a CR/LF. The EOL

Sequence Control Reg 16 |Control Regs 17 through 23
CR-LF-Nuli 3 Reg 17 = 13
Reg 18 = 10
Reg 19 = 0
CR-LF-Nuli 6 Reg 17 = 13
Null-RO-RO Reg 18 = 10
Reg19 = 0
Reg20 = 0
Reg 21 = 255
Reg 22 = 255
CR-LF-Null-Null- 21 Reg 17 = 13
RO-RO-followed Reg 18 = 10
by 15 Nulls Reg19 = 0
Reg20 = O
Reg 21 = 255
Reg 22 = 255
Reg23 = 0

1 When the value for Register 16 exceeds 7, the characters defined by Registers 17 through 23 are ou
characters until the count value is satisfied.

tput first, followed by continuous Register 23

Troubleshooting Hints

Problem

The Serial Interface 161

Probable Cause

OUTPUT and ENTER operations
hang.

Random unintelligible data. OUTPUT
completes, but ENTER does not.
Input data has underlines when
printed or displayed.

All input characters are underlined.
Approximately half of input is under-
lined.

Overwritten data on slow printers.

Remote loses data.

Single Character OK, but multiple
characters in succession produce
garbage. .

Ensure auto-handshake feature is disabled if not required.

Incorrect Baud rate spacified, or mismatched data codes. The internal data
code of the HP-85 is ASCII. Use conversion tables if other codes are used.
May also be caused by incorrect stop bits or bits per character specified.

Underlining is the default method used to indicate parity or framing errors.

Incorrect parity specified.

Check for correct bits per character and stop bits specified. May also be
caused when parity is specified for the interface and is not used by the
remote.

Increase the number of EOL “Null” characters that are output. This allows
the print mechanism time to execute a CR/LF sequence.

Remote may require handshakes to prevent buffer overrun.

Incorrect stop bits or bits per character specified.

162 The Serial Interface

Serial I/0O Statements

Statement Description

ABORTIO Aborts any transfers in progress, deactjvates modem lines.

ASSERT Exegutes animmediate write to Control Register 2. May be executed while active data transfers
are in process.

CONTROL Writes to the Control Registers in the interface.

ENABLE INTR Wirites interrupt mask to Control Register 1.

ENTER Enters data from the interface into the BASIC program.

HALT Aborts any transfers in progress, does not deactivate modem lines.

OUTPUT Transfers data from the BASIC program to the interface for transmission to the remote.

REQUEST Transmits a BREAK to the remote. Optional parameter Lpecifies length of BREAK signal.

RESET Resets the interface, disconnects the modem lines; sets the interface to the reset defaults, and
runs the internal self test.

RESUME Enables the interface transmitter.

SEND Outputs data as bytes, and sends EOL sequence if specified.

STATUS Enters the values contained in the interface status registers.

TRANSFER Enters received data into a buffer. Outputs data from a buffer to the interface.

Serial Interface Errors

Error No. Meaning Posflble Cause
113 UART receiver overrun; data has | Data rat4 too high.
been lost.
114 Receiver buffer overrun; data has | Data rati too high.
been lost. Handshake needed.

115 Automatic disconnect forced. Loss of modem signals.

Section 14

Using the BCD Interface

Section Introduction

The 82941A Interface enables your HP-85 to communicate with a variety of instruments that present data in
Binary Coded Decimal (BCD) format. This section explains how to program the interface.

The 82941A Interface Installation and Theory of Operation Manual explains:

o How to set the interface select code.

e How to set the interface default switches.
o How to wire the interface cables.

e How to install the interface in your HP-85.

You should read and understand the Installation and Theory of Operation Manual before proceeding with the
topics covered in this section.

‘ Binary Coded Decimal

Binary Coded Decimal is, as the name implies, a method of encoding the decimal digits (O through 9) in a
four bit format. The following table shows the binary coding of the ten decimal digits and six additional
ASCII characters that are allowed. The interface can be programmed through default switches or program
statements to recognize either positive-true or negative-true logic. The table shows the allowable ASCII
characters and the associated BCD codes for each logic sense.

BCD Coding
ASCII | Positive True | Negative True
0 0000 1111
1 0001 1110
2 0010 1101
3 0011 1100
"4 0100 1011
5 0101 1010
6 0110 1001
7 o111 1000
8 1000 0111
9 1001 0110
: 1010 0101
; 1011 0100
< 1100 0011
= 1101 0010
> 1110 0001
‘ ? 1111 0000
163

164 Using the BCD Interface

Data and Handshake Lines

Data and handshake lines are provided as follows:

e Data - 44 bi-directional data lines organized as 11 four-bit ports (PO through P10).

e Sign Bits - four sign bits (S1 through S4) through port P11.

e Handshake - four output handshake lines (I/OA, I/OB, CTLA, CTLB).

* - two input handshake lines (FLGA, FLGB).

Operating Modes

The operating mode refers to selecting the fields as shown in in the next table.

Operating Mode

Flield Range

Number of channels A, B, or both.
Channel Direction Input or output.
Number of mantissa digits 0 through 11.

in each channel’ '
Number of exponent digits 0 through 3.

for each channel!
Number of function digits 0 through 11.

in each channel'

each mantissa mantissa digit.
Logic sense of all signals Positive or negati
Handshake triggering Leading or trailing

Decimal point placement for May be placed before any

ve true.
edge.

Default Formats

The BCD interface provides two standard default formats: single and ¢
selected by changing the reset default switch (S2) switch 1 or by program
their associated port assignments are shown in the next tables.

dual channel. These formats are
control. The default formats and

Single Channel Format (S2 switch 1= ‘‘0” position)

Handshake

Number of Ports |Ports (or bits) Used Data
8 PO through P7 Mantissa
1 P8 Exponent
1 P9 Function
1/2 P11(bits S1 and S2) | Sign Bits

Channel A
Channel A
Channel A
Channel A

1 The combined sum of mantissa, function, and exponent digits specified cannot exceed 11.

Using the BCD Interface 165

Dual Channel Format (S2 switch 1= ““1” position)

Number of Ports |Ports (or bits) Used} Data Handshake
4 PO through P3 Mantissa | Channel A
1 P4 Function Channel A
4 P5 through P8 Mantissa | Channel B
1 P9 Function Channel B
1/2 P11 (bits 81 and.$2)| Sign Bits | Channel A
1/2 P11 (bits S3 and S4)| Sign Bits | Channel B

Examples are provided following the discussion of the interface registers to show how to select these and

other formats with program statements.

Data Rates

The data transfer rate depends upon the direction of the transfer, the type of transfer (normal, fast handshake,
or interrupt), concurrent operations taking place and peripheral timing. The maximum data rates that the

interface can handle are as follows:

Transfer Rate_s

Transfer Type Input Output
Fast Handshake 20k bytes/sec 22k bytes/sec
Normal ENTER 7k bytes/sec 4k bytes/sec
Interrupt 400 bytes/sec 400 bytes/sec

The data rates shown for the fast handshake mode are achieved by placing the following restrictions on the

fast handshake mode:

o wor o

. Standard Format

¢ Channel A only (one peripheral).

« Eight mantissa digits only.

* One exponent digit only.

e Function digit may be selected but is ignored.

* Mantissa and exponent signs will be transferred.

Byte count must be specified on an input.

Positive true logic on data lines.

. Trailing edge handshake only.

Decimal points may be selected but will not be transferred.

ASCII codes 0 through 32 and ASCII code 44 (comma) cannot be used for output.

If the peripheral fails to complete a handshake during the fast handshake mode, the CPU in the HP-85 halts
and the system hangs up. To recover, the FLGB line, unused in the fast handshake mode format, may be used
to indicate errors by the peripheral. If FLGB goes true while the interface is waiting for a handshake, the fast
handshake mode is terminated and Error 115 is displayed.

166 Using the BCD Interface

Program Statements

The following program statements are implemented by the BCD interface card. See the syntax reference for

complete description of these statements.

ABORTIO! ENABLE INTR REMOTE
ASSERT! ENTER RESET
HALT! OUTPUT SEND CMD
CONTROL SEND DATA

Using the Interface

SEND TALK
SEND LISTEN
STATUS!
TRANSFER

This discussion assumes that you have read the BCD Installation and Theory of Operation Manual.

Programming With Default Formats

This discussion shows how to program the interface with the single or dual|channel defaults formats that are
provided. Factory settings are assumed for the interface select code and the default switches. The factory

settings are:
e Interface Select Code (S1) = 3 (all set to the *“0”’ position).

e Reset Default Switches (S2) = all set to the *“0”’ position.

Example 1

Run the following program:

1 Executing this statement interrupts any I/O operation that may be in progress.

Using the BCD Interface 167

‘ Here is the printout:

. — Interface 1.D.

— Interrupt Mask

— Handshake Lines

— Mantissa Digits Specified
— Exponent Digits Specified

. — Function Digits Specified

- . — Decimal Point Location

-~ — Handshake Logic Sense

— Data Logic Sense

i, — Function Logic Sense

- — Signs and Port 10 Logic Sense

Note that read register O and registers 3, 4, and 5 are not zero. Read register 0 identifies the interface as the
BCD interface. Register 3 indicates the number of mantissa digits to be input (in this case eight). Register 4
indicates the number of exponent digits (one) to be input and register 5 indicates the number of function
digits (one) to be input. Registers 7 through 10 indicate the logic sense of the various data and handshake
lines (the value of 0 indicates positive true logic sense). Read registers 1 and 2 and register 6 are not used for
this example and are discussed later in this section.

Example 2

Assume that you are connected to a digital multimeter. The multimeter outputs eight significant data digits, a
. one-digit exponent, and a one-digit function value. All logic senses (data, handshake, etc.) are defined as

positive true.

The following program reads the data from the multimeter and prints the results on the HP-85 printer.

Here is a typical printout:

168 Using the BCD Interface

Example 3

The function value is used to indicate the position of the function switch (ghms, volts, amps, etc.) located on

the multimeter. If the function values are defined as:

1 = Ohms
2 = Volts AC
3 = Amps
4 = Volts DC

Run the following program:

Here are typical results:

FEADTHG: PSR OHMG
FLIMCT IO
Example 4

The BCD interface can be connected to two BCD devices simultaneously
switch 1 to the ‘‘1°” position. This changes the default mode of the interfa
the following program:

Set the reset default switch (S2)
ce to two channel operation. Run

Using the BCD Interface 169

. Here are the results:

— Interface 1.D.

— Interrupt Mask

— Handshake Lines

— Mantissa Digits Specified
— Exponent Digits Specified
— Function Digits Specified
— Decimal Point Location
— Handshake Logic Sense
— Data Logic Sense

— Function Logic Sense

— Signs and Port 10 Logic Sense

Note that registers 3, 4, and 5 values are different than those obtained for example 1.

The value (68) for register 3 indicates that four mantissa digits are reserved for channel A input and four
mantissa digits are reserved for channel B input. The value (0) for register 4 indicates that neither channel is
using an exponent digit. The value (17) for register 5 indicates that each channel has one digit reserved for
input function data.

For example, the interface might be connected to a signal generator and a digital voltmeter:

‘ Generator

Channel A o @ 0 Circuit

9 Q © 0000 © [}
‘\\\\ i

= //j::::i <:f) ///’
Channel B

o

BCD Interface

" pOHRESE BEEEEEES

HP-85

Meter

170 Using the BCD Interface

Example 5

The signal generator is driving a circuit under test for frequency response. The voltmeter takes readings of
the circuit output. By comparing the voltage vs. frequency readings, the bandpass of the circuit is deter-

mined.

Here is an example program. Typical frequency and voltage parameters are used.

M

Partial Fields

The examples shown thus far enter the input data from the interface in
function A, mantissa B, function B. You cannot enter a portion (or field

the following order: mantissa A,
of data (e.g., mantissa B) without

first entering all preceding data. Partial field addressing is provided to enable you to access only the data that

you desire. Partial field addressing is accomplished by specifying prim
partial field specifiers and the data that they access are shown in the ne
assumed.

Partial Field Specification

ary addresses 00 through 06. The
xt table. Interface select code 3 is

Device

Selector Data Entered

300 All data (Default)

301 Channel A mantissa, exponent, and
302 Channel B mantissa, exponent, and
303 Channel A mantissa and exponent.
304 Channel B mantissa and exponent.
305 Channel A function.

306 Channel B function.

function.
function.

Using the BCD Interface 171

‘ Example 6

Run the previous program (example 5) and observe the results. Execute the following statements and observe
the results shown here.

EMTER
FRIMNT AL,

EMTER
FRIMT A1:F1

. Once a partial field has been specified, that field remains in in effect until a new field is selected or the
interface is reset.

Partial fields are addressed by ENTER, OUTPUT, SEND TALK, SEND LI§TEN and SEND CMD state-
ments.

Port10

The previous examples show how to take readings from external devices. The operator is required to
manually set the instrument functions (frequency, function, etc.). The BCD interface provides a special port
to allow control of external instruments from the program. This discussion explains how to use port 10 for
output.

In the two channel example (example 5), the BCD interface ports are dedicated as follows:

e Ports PO through P3 - Signal generator frequency reading.
e Port P4 - Signal generator function (range switch).

e Ports P5 through P8 - Voltmeter reading. »

e Port P9 - Voltmeter function (voltage range switch).

e Port 10 - Unused.

172 Usihg the BCD Interface

Port 10 is a special purpose port that can be used as an input or output port

. Port 10 is the only port that can be

used as an output port without setting the reset default switch to the output enable position. Port 10 is

accessed by performing a control operation to the four least significant bi

ts of write register 2. For example:

CONTROL 3,2;15 sets all four bits of port 10. The next example assumes the same instrument configuration

and function values as those used for example 5.
The function values returned are the same as defined for that example.
The following assumptions about the signal generator are made:

o The generator sweep values range from 1 through 1000.
e Abit can be set to begin the sweep at 1.
o The generator has three ranges.

e Each range can be externally selected.

Here is the bit mask for the generator:

Bit 3 Bit 2 Bit 1 Bit 0
1= 1= 1 = 1|=

MHz KHz Hz Start
Range Range Range Sweep

Value = 8 | Value = 4 | Value = 2 | Value

> = 1

Example 7

The program initially sets the generator to the 1 Hz range and starts the sw
Hz, the program switches the generator to the kHz range and restarts th

cep. When the sweep reaches 1000
c sweep. When the sweep reaches

1000 kHz, the program switches the generator to the MHz range and again restarts the sweep. When the

sweep reaches 1000 MHz, the entire program is restarted. Here is the pro

gram:

Using the BCD Interface 173

"EHz' LA FUMCTION =2

TURH o
"Ll livelte” 1B FUMCTION =2

T :

"MHzY LA FUHCTION =3

TURH :

BovEmUnlts" B FUHCTION =3

A RETLRH ~ : ‘; -
1 IF F1l4Z THEM 258 | CHECK FOR MAX FRED RAMGE

Fo2 5 24tFL+13+1 | CHANGE GEMERATOR FUMCT

Interrupts

The BCD interface provides program interrupt. Interrupts are generated only from the most-significant digit
of the function. If you are only inputting one digit of function information (see the previous example), then
this digit generates the interrupt. You enable the interrupt mask to write register 1 with an ENABLE INTR
and specify a BASIC service routine with an ON INTR statement.

Example 8

Let’s change the previous example to generate an interrupt if the voltmeter detects an overrange condition.
Assume that the voltmeter returns a function value of 8 when an overrange is detected. Add the following
program lines to the program used for the previous example:

L O IHTR 3

Existing Program

TR 3i188 B RETURN

Line 1 - defines the program branch.

Line 2 - defines the bit in the function digit that can cause an interrupt (see write register 1) and enables the
interrupt.

Line 300 - enters‘ the value of read register 1 into variable S1. The status of read register 1 must ALWAYS be
checked following an interrupt. Subsequent interrupts are prevented until this interrupt is ser-
viced.

174 Using the BCD Interface

Line 310 - checks to see which bit of the function digit caused thé interrupt. This check is used to prioritize

the interrupts when more than one bit generates the interrupt (
also re-enables the interrupt with a new control word (128) to

see multiple interrupts). This line
write register 1 if the function A

value returned is less than 8 (bit 4 not set). Notice that the RETURN statement is placed on the

same line as the ENABLE INTR statement.

Multiple Interrupts

More than 1 bit of the function value can be specified to generate an interrupt. This feature allows you to

define the priorities of the interrupts. Here is an example routine to service
bit 3 routine is serviced prior to the bit O routine if they both occur.

Example 9

multiple interrupts. Note that the

i

Main Program

|

Line 20 - specifies bits 0 and 3 to generate an interrupt.

Line 200 - enters the status byte from read register 1 (interrupt cause).

Line 210 - checks for a bit 3 interrupt (first priority). If bit 3 is true (set),
servce routine (lines 240 through 260).

Line 220 - is the bit 0 service routine.
Line 230 - re-enables the interrupt and returns to the main program.

Line 240 - is the bit 3 service routine.

the program branches to the bit 3

Line 250 - checks for a bit O interrupt (second priority). A program branch to the bit 0 routine (line 220)

occurs only if bit 0 is true (set).

Line 260 - re-enables the interrupt and returns to the main program.

You determine the priorities for the interrupts. The bit O interrupt can be de
by exchanging the arguments of the bit functions (lines 210 and 250).

fined as having the higher priority

Using the BCD Interface 175

Registers

The interface contains 13 registers that can be accessed from the HP-85. These registers are divided into three
groups: read registers, write registers, and bi-directional registers. Read registers are accessed with the
STATUS statement. Write registers are accessed with the CONTROL statement. The bi-directional registers
are accessed with either the STATUS (input) statement or the CONTROL (output) statement. Other state-
ments (ASSERT, ENABLE INTR) access specific registers only and are explained with the register descrip-
tion. Thi$ discussion explains each register and shows the access procedure.

Note: The default values shown for all registers assume that the reset default switch (S2) is set to the
factory setting (all “0"'s). Positive-true logic sense is assumed for all descriptions.

Read Register 0

interface ID

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Always Always Always Always Always Always Always Always
0 0 0 0 0 0 1 1

Value = 128| Value = 64 | Value = 32 |Value = 16| Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

The value returned (always 3) from this register is entered into variable SO. The value 3 indicates that this is
the BCD interface.

Read Register 1

Interrupt Cause

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Generated from , Generated from
Function B (Most Significant Digit) : Function A (Most Significant Digit)

Value = 128 Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

The value returned indicates the bit (or bits) that generated the interrupt. See write register 1 for a complete

discussion about the BCD card interrupts.

Default value: O

176 Using the BCD Interface

Read Register 2

Uniline Messages

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
/0 A /0 B Cntrl A Cntrl B Flag A Flag B
0 = Input 0 = Input | 0 = Ready | 0 = Ready | 0 = Ready | 0 = |Ready 0 0

1 =0Output | 1 = Output| 1 =Busy | 1 =Busy | 1 =Busy | 1

Busy

Value = 128| Value = 64 | Value = 32 |Value = 16 | Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

The value returned indicates the status of the various handshake signals.
Default value: 0

The meanings of the various bits are described next.

e Bit 7 set (1) indicates that channel A ports are enabled for output operation. Bit 7 reset (0) indicates that
channel A ports are set to the input mode.

e Bit 6 set (1) indicates that channel B ports are enabled for output operation. Bit 6 reset (0) indicates that
channel B ports are set to the input mode.

e Bit 5 set (1) indicates that the the channel A ‘‘Control’’ handshake line is active (busy). Bit 5 reset (0)
indicates that the channel A ‘“Control’’ handshake line is ready.

e Bit 4 set (1) indicates that the channel B ‘“Control’’ handshake line is active (busy). Bit 4 reset (0)
indicates that the channel B ‘‘Control’” handshake line is ready.

e Bit 3 set (1) indicates that the channel A ‘‘Flag’’ handshake line is busy. The peripheral device
connected to channel A uses the ‘‘Flag’’ line to indicate its status to the HP-85. Bit 3 reset (0) indicates
that the channel A peripheral is ready.

e Bit 2 set (1) indicates that the channel B ‘‘Flag’’ handshake line is busy. The peripheral device
connected to channel B uses the ‘‘Flag’’ line to indicate its status to the HP-85. Bit 2 reset (0) indicates
that the channel B peripheral is ready.

e Bits 1 and 0 are not used.

Write Register 0

Write register O in not implemented. Attempting to access write register (generates error 111.

Using the BCD interface 177

Write Register 1

Interrupt Mask

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Function B Function A
(Most Significant Digit) (Most Significant Digit)

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

EMARLE THTRE 3 <mask value>
COHTROL 3.1 5 <mask value>

Write register 1 contains the interrupt mask for channel A and channel B. The interrupts are generated from
the most significant digit of the function value of each channel. For example, assume that channel A is
configured for two digit function values from an external device. These values range from 00 through 99.
You can specify an interrupt only for values of the tens digit. The units digit can not generate an interrupt. If
a single digit function value is specified (default) then that single digit is the most significant digit and can
generate an interrupt (see example 8).

Write Register 2

Handshakes and Port 10

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
/0 I/0 CTL CTL Port 10 Output
Channel Channel Channel Channel (when available)
A B A B

Value = 128 Value = 64 | Value = 32| Value = 16| Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

e <value>

GO TROL S
FamsiERT 5,2 <value>

Write register 2 enables you to control the interface handshake lines from a program. The output data for port
10 (if port 10 is available for output) is also written to this register.

178 Using the BCD Interface

The meanings of the various bits are described next. ‘

e Bit 7 set (1) enables channel A ports for output. The reset default switch (S2) switch 8 must be set to the
“1” position. Attempting to set bit 7 with S2 switch 8 in the *“0’’ position (default) generates error
113. Bit 7 clear (0) enables channel A ports for input.

e Bit 6 set (1) enables channel B ports for output. The reset default switch (S2) switch 8 must be set to the
“1”” postition. Attempting to set bit 6 with S2 switch 8 in the ‘0’ position (default) generates error
113. Bit 6 clear (0) enables channel B ports for input.

e Bit5 enables you to control the CTL handshake line for channel A.|This line remains active until the
interface is reset or bit 5 is cleared (set to 0). If this bit is not reset, subsequent ENTER or OUTPUT
operations generate error 118. '

e Bit 4 enables you to control the CTL handshake line for channel B. [This line remains active until the

interface is reset or bit 4 is cleared (set to 0). If this bit is not reset, subsequent ENTER or OUTPUT
operations generate error 118.

e Bits 3 through 0 are port 10. When port 10 is used as an output port, the data is written to these four bits
(see example 7). The input/output switch (S2) switch 8 does not affect port 10. When port 10 is enabled
as an input port or configured as part of a channel, any attempt to output to port 10 generates error 114,

Register 3
Mantissa Digits
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Digits Number of Digits
Assigned for Channel B Assigned for Channel A
Mantissa (0 — 11) Mantissa (0 — 11)

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value = 4 Value = 2 | Value = 1

To access this register execute:

The value contained in this register indicates how many mantissa digits are specified for each channel. To
change this specification, execute the appropriate CONTROL statement to| this register. The new specifica-
tion remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: 8 (Channel A only)

Note: The reset default value for two channel operation is 68. This indicates that four mantissa digits
are specified for each channel (see example 4).

Using the BCD Interface 179

Register 4
Exponent Digits
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Digits Number of Digits
Assigned for Channel B Assigned for Channel A
Exponent (0 — 3) Exponent (0 — 3)
Value = 128] Value = 64 | Value = 32| Value = 16| Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

The value contained in this register indicates how many exponent digits are specified for each channel. To
change this specification, execute the appropriate CONTROL statement to this register. The new specifica-
tion remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: 1 (Channel A only)

Note: The reset default value for two channel operation is 0. This indicates that no exponent digits are
specified for either channel.

Register 5
Function Digits
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Digits Number of Digits
Assigned for Channel B Assigned for Channel A
Function (0 — 11) Function (0 — 11)
Value = 128| Value = 64 | Value = 32| Value = 16 | Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

4.5 <value>

The value contained in this register indicates how many function digits are specified for each channel. To
change this specification, execute the appropriate CONTROL statement to this register. The new specifica-
tion remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: 1 (Channel A only)

Note: The reset default value for two channel operation is 17. This indicates that one function digit is
specified for each channel.

180 Using the BCD Interface

Register 6
Decimal Point Placement
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Mantissa Number of Mantissa
Digits Assigned to the Digits Assigned to the
Right of the Decimal Point. Right of the Decimal Point.
(Channel B) (Channel A)

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 Value = 4 | Value = 2 | Value = 1

To access this register execute:

ETRTUS 3.6

LOMTROL 3. 8, <value>

The value contained in this register indicates how many mantissa digits to the right of the decimal point are
specified. To change this specification, execute the appropriate CONTROL statement to this register. The
new specification remains in this register until changed by another CONTROL statement or until the interface
is reset. Note that the specification cannot exceed the number of mantissa digits specified for that channel.

For example, if eight mantissa digits are specified for channel A, then a

maximum of eight digits can be

specified to the right of the decimal point for this channel. Decimal point placement can only be specified for

input operations.

Reset default: O

Register 7
Control and Handshake Sense
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit|2 Bit 1 Bit 0
Logic Logic Logic Logic Logic Logic Handshake | Handshake
Sense Sense Sense Sense Sense Sense Mode Mode
/0 A /0B CTL A CTLB Flag A Flag B A B
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value = 4 | Value = 2 Value = 1
To access this register execute:
STHTUS &, 7y
COWTROL 3.7 <value>

The value contained in this register indicates the logic sense of the control
this specification, execute the appropriatt CONTROL statement to this
remains in this register until changed by another CONTROL statement or u

Reset default: O

and handshake lines. To change
register. The new specification
ntil the interface is reset.

Using the BCD Interface 181

The meanings of the various bits are described next.

Bit 7 set (1) indicates that the logic sense for the channel A /O control line is negative-true. Bit 7 reset
(0) indicates positive-true logic sense.

Bit 6 set (1) indicates that the logic sense for the channel B I/O control line is negative-true. Bit 6 reset
(0) indicates positive-true logic sense.

Bit 5 set (1) indicates that the logic sense for the channel A CTL handshake line is negative-true. Bit 5
reset (0) indicates positive-true logic sense.

Bit 4 set (1) indicates that the logic sense for the channel A CTL handshake line is negative-true. Bit 4
reset (0) indicates positive-true logic sense.

Bit 3 set (1) indicates that the logic sense for the channel A Flag handshake line is negative-true. Bit 3
reset (0) indicates positive-true logic sense.

Bit 2 set (1) indicates that the logic sense for the channel B Flag handshake line is negative-true. Bit 3
reset (0) indicates positive-true logic sense.

Bit 1 set (1) indicates leading-edge trigger sense for the interface CTL A handshake line. This specifies
that the CTL line goes false on the leading edge of the channel A Flag line. Bit 1 reset (0) indicates
trailing-edge trigger sense for this handshake sequence.

Bit O set (1) indicates leading-edge trigger sense for the interface CTL B handshake line. This specifies
that the CTL line goes false on the leading edge of the channel B Flag line. Bit O reset (0) indicates
trailing-edge trigger sense for this handshake sequence.

Register 8
Data Sense
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Logic Sense for Logic Sense for
Channel B Input Data. Channel A Input Data.
Value = 128| Value = 64 | Value = 32 | Value = 16| Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

The value contained in this register indicates the logic sense of each bit of the data digits in each channel. To
change this specification, execute the appropriate CONTROL statement to this register. The new specifica-
tion remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: O

182 Using the BCD Interface

The meanings of the various bits are described next.

e Bit 7 (1) set indicates that the logic sense of the most significan
negative-true. Positive-true logic sense is indicated by bit 7 clear (0).

bit (bit 3) of channel B data is

e Bit 6 set (1) indicates that the logic sense of bit 2 of channel B data is negative-true. Positive-true logic

sense is indicated by bit 6 clear (0).

e Bit 5 set (1) indicates that the logic sense of bit 1 of channel B data is negative-true. Positive-true logic

sense is indicated by bit 5 clear (0)

o Bit 4 set (1) indicates that the logic sense of the least significant
negative-true. Positive-true logic sense is indicated by bit 4 clear (0).

e Bit 3 (1) set indicates that the logic sense of the most significant
negative-true. Positive-true logic sense is indicated by bit 3 clear (0).

bit (bit 0) of channel B data is

bit (bit 3) of channel A data is

e Bit2 set (1) indicates that the logic sense of bit 2 of channel A data is negative-true. Positive true-logic

sense is indicated by bit 2 clear (0).

e Bit 1 set (1) indicates that the logic sense of bit 1 of channel A data is negative-true. Positive-true logic

sense is indicated by bit 1 clear (0)

e Bit 0 set (1) indicates that the logic sense of the least significant
negative-true. Positive-true logic sense is indicated by bit 0 clear (0)

bit (bit 0) of channel A data is

Register 9
Function Data Sense
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 " Bit 1 Bit 0
Logic Sense for Logic Sense for
Channel B Function Data. Channel A Function Data.

Value = 128 Value = 64 | Value = 32| Value = 16 | Value = 8 | Value

=4 | Value = 2 | Value = 1

To access this register execute:

L Ly L wus
STHTL S 3.9 55

COHTROL. 3058 <value>

The value contained in this register indicates the logic sense of each bit of the function digits in each channel.

To change this specification, execute the appropriate CONTROL statement

to this register. The new specifi-

cation remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: 0

Using the BCD Interface 183

‘ The meanings of the various bits are described next.
e Bit 7 (1) set indicates that the logic sense of the most significant bit (bit 3) of channel B function is
negative true. Bit 7 clear (0) indicates positive-true logic sense.

e Bit 6 set (1) indicates that the logic sense of bit 2 of channel B function is negative-true. Positive-true
logic sense is indicated by bit 6 clear (0).

e Bit 5 set (1) indicates that the logic sense of bit 1 of channel B function is negative-true. Positive-true
logic sense is indicated by bit 5 clear (0)

e Bit 4 set (1) indicates that the logic sense of the least significant bit (bit 0) of channel B function is
negative true. Bit 4 clear (0) indicates positive-true logic sense.

e Bit 3 (1) set indicates that the logic sense of the most significant bit (bit 3) of channel A function is
negative true. Bit 3 clear (0) indicates positive-true logic sense.

e Bit 2 set (1) indicates that the logic sense of bit 2 of channel A function is negative-true. Positive-true
logic sense is indicated by bit 2 clear (0).

e Bit 1 set (1) indicates that the logic sense of bit 1 of channel A function is negative-true. Positive-true
logic sense is indicated by bit 1 clear (0)

e Bit 0 set (1) indicates that the logic sense of the least significant bit (bit 0) of channel A function is

negative true. Bit O clear (0) indicates positive-true logic sense.

‘ Register 10

Sign and Port 10 Sense

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Logic Logic Logic Logic
Sense Sense Sense Sense Logic Sense for
Exponent Mantissa Exponent Mantissa Port 10 Data.
B B A A

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 | Value = 4 | Value = 2 | Value = 1

To access this register execute:

COMTREOL 3. 18 <value>

The value contained in this register indicates the logic sense of the sign bits and the port 10 data bits. To
change this specification, execute the appropriatet CONTROL statement to this register. The new specifica-
‘ tion remains in this register until changed by another CONTROL statement or until the interface is reset.

Reset default: 0

184 Using the BCD Interface

The meanings of the various bits are described next. ‘

® Bit7 set (1) indicates negative-true logic sense for the sign bit of the channel B exponent. Bit 7 clear (0)
indicates positive-true logic sense for this bit.

e Bit 6 set (1) indicates negative-true logic sense for the sign bit of the channel B mantissa. Bit 6 clear (V)
indicates positive-true logic sense for this bit.)

o Bit 5 set (1) indicates negative-true logic sense for the sign bit of the channel A exponent. Bit 5 clear (0)
indicates positive-true logic sense for this bit.

e Bit 4 set (1) indicates negative-true logic sense for the sign bit of the channel A mantissa. Bit 4 clear (0)
indicates positive-true logic sense for this bit.

e Bit 3 (1) set indicates that the logic sense of the most significant bit (bit 3) of port 10 data is
negative-true. Bit 3 clear (0) indicates positive-true logic sense.

e Bit 2 set (1) indicates that the logic sense of bit 2 of port 10 data is negative-true. Positive-true logic
sense is indicated by bit 2 clear (0).

e Bit 1 set (1) indicates that the logic sense of bit 1 of port 10 data is negative-true. Positive-true logic
sense is indicated by bit 1 clear (0)

e Bit 0 set (1) indicates that the logic sense of the least significant bit (bit 0) of port 10 data is
negative-true Bit O clear (0) indicates positive-true logic sense.

Non-Standard Formatting

You can specify formats other than the single or dual channel default formats that are provided. This
discussion explains how to select formats by executing CONTROL statements to the appropriate registers.

Single Channel Formatting

Assume that you want to specify the following single channel format for channel A:

Format Selection

Format Desired | Register Access | Value

5 mantissa digits Register 3 5
2 exponent digits Register 4 2
2 function digits Register 5 2
4 digits to right Register 6 4

of decimal point
Negative true data Register 8 15

Using the BCD Interface 185

‘ Example 10

Run the following program and observe the results as shown:

i

USTHE
USTHG

— Interface 1.D.

— Interrupt Mask

— Handshake Lines

— Mantissa Digits Specified
— Exponent Digits Specified
— Function Digits Specified
— Decimal Point Location
— Handshake Logic Sense
— Data Logic Sense

— Function Logic Sense

— Signs and Port 10 Logic Sense

186 Using the BCD Interface

When PAUSE appears on the display, press continue and observe the results as shown.

.. — Interface 1.D.

 — Interrupt Mask

— Handshake Lines

— Mantissa Digits Specified
— Exponent Digits Specified
-— Function Digits Specified
— Decimal Point Location
ake Logic Sense
— Data Logic Sense

— Function Logic Sense

. — Signs and Port 10 Logic Sense

The interface is now configured.to the desired format. This configuration remains until it is changed or until
the interface is reset.

Dual Channel Formatting

Assume that you want to specify the following dual channel format:

Format Selection

Channel A Channel B
Register Access
Format Desired Value Format Desired Value
2 mantissa digits 2 2 mantissa digits 32 Register 3
1 exponent digit 1 2 exponent digits 32 Register 4
1 function digit 1 1 function digit 16 Register 5
No decimal point 0 No decimal point 0 Register 6
Positive true data 0] Negative true data 240 Register 8

Example 11

Add the following lines to the previous program:

Using the BCD Interface 187

‘ When PAUSE?2 is displayed, press CONT and observe the results as shown here. The interface is now

configured for the dual channel format as specified. This configuration remains until it is changed or until the
interface is reset.

— Interface I.D.
— Interrupt Mask
— Handshake Lines
+ — Mantissa Digits Specified
- — Exponent Digits Specified
- — Function Digits Specified
- — Decimal Point Location
— Handshake Logic Sense
— Data Logic Sense

Fa s]
R Iy

Data Output

The interface can output data via the I/O ports. The reset default switch (S2) switch 1 must be placed in the
‘1 position.

Example 12 -

The next program assumes single channel default format. Here is the program:

T MODE

L

THG 58

The output image specification must correspond exactly with the mode of the interface card. The following
image statements can be used for single and dual channel default formats:

: £ - Single channel default format.

s M4Z . 2 - Dual channel default format.

The interface can be configured for non-standard output formats in the identical manner as shown for
non-standard inputs (see Non Standard Formats).

188 Using the BCD Interface

Transfers

When enterihg data with the TRANSFER statement, you can calc
parameters as follows:

1. Count one byte for each mantissa and function digit.

2. Add one byte for mantissa sign (if applicable).

3. Count one byte for each exponent digit plus two bytes for the *‘E’’

BCD I/O Statements

ulate the buffer sizes and count

and the exponent sign.

Statement Description

ABORTIO Aborts any transfer in progress, sets all control lines false.

ASSERT Immediately writes a value to register 2, placing I/OA, /0B, CTLA, CTLB, and port 10
lines in the specified state.

CONTROL Writes values to the interface control registers.

ENABLE INTR Writes enable mask to control register 1. Used to select event interrupts.

ENTER Enters data from the interface into the BASIC program.

HALT Aborts any transfer in progress. Does not change external lines and does not reset
the interface.

OUTPUT Outputs data from the BASIC program to the interflce.

REMOTE Sets the partial field specifier if the listen address ranges from 00 to 06, otherwise

S ignored.

RESET Resets the interface to the default switch settings, sets 1/0 lines to the input state,
and sets all handshake lines false.

SEND CMD - Commands 32 through 38, and 64 through 70 are valid. DATA - transfers data
to the peripheral. Values 0 through 32, and 44 are jgnored. TALK and LISTEN
- Addresses whose lower 5 bits evaluate from 0 to 6 set the partial field.

STATUS Inputs values from the interface status registers.

TRANSFER Moves data from a port to a buffer, or from a buffer to a port. INT and FHS transfers

are allowed.

BCD Interface Errors

Using the BCD Interface

Error No. Meaning Possible Cause

110 Self test failure in /O card. Hardware failure

111 lllegal /O operation. Instruction not recognized by the inter-
face. lllegal parameter in instruction.
Exceeded the available number of re-
gisters.

113 lliegal mode of card. Exceeded 11 digits total. More than 3
exponent digits per channel. Channel
B has mantissa or exponent digits
when direction of channel B does not
equal the direction of A. Not standard
format for FHS. Tried to set channel to
output when the output enable switch
was open.

114 Port 10 not available. Tried to write data to port 10 when it
was selected by a channel.

115 Fast handshake transfer aborted by | Flag B went true during fast hand-

the peripheral. shake.

116 Direction mismatch. Tried to OUTPUT to an input channel
or ENTER from an output channel.

117 Instruction directed to nonexistent | Field was allocated 0 digits. Partial

field. field specifies a field of 0 digits.

118 Handshake not ready. Control was true at start of handshake.

119 Data format error. Output data did not match card’s mode
in number of digits.

189

190

Section 15

Using the GPIO Interface

Section Introduction

The 82940A interface allows your HP-85 to communicate with a wide variety of devices through the use of
parallel data exchanges. A parallel interface sends or receives an entire byte or word of data in one
operation. This is the most basic, and most versatile, method of I/O. However, it is the inherent versatility of
this interface that makes it appear somewhat confusing at first. Don’t be overwelmed. Consider each
interface characteristic of your peripheral device and deal with these characteristics one at a time. For
example, there are 16 primary addresses to choose from on this interface. But if you know that your only
requirement is the input of 8-bit data, you can eliminate 14 of the 16 choices. By using this ‘‘process of
elimination’’ approach, you can master a parallel interfacing task in short order.

This section explains the use of the 82940A interface from a programming point of view. The emphasis is on
accessing the capabilities of the interface using program statements. Unlike the HP-IB interface however, a
basic parallel interface does not isolate you from the hardware. Many references to the characteristics of the
hardware are necessary to properly explain the various features available to you. If your background is solely
in software, you will probably want to solicit the help of a person with some hardware background. In fact, a
technician or ‘‘hardware type’’ is practically a necessity during the installation of a parallel interface because
there aren’t any connectors wired to the 82940A when you receive it. Most of the hardware information is
presented in the 82940A Interface Installation and Theory of Operation manual. Please refer to that manual
for hardware details such as:

e How to set the interface select code

e How to set the default configuration switches
e How to connect the interface cables

o Recommended driver and receiver circuits

Throughout this section, the abbreviation ‘‘GPIO’’ is used when referring to the 82940A parallel interface.
This stands for ‘‘General Purpose Input and Output’’ and reflects the flexible nature of the interface.

191

192 Using the GPIO Interface

Essentials of a Parallel Interface

The Section Introduction recommended that you consider each interface characteristic individually whenever .
possible. What are these essential characteristics? In most cases, a parallelinterface will be successful if each
of the following characteristics has been properly determined:
e Direction of data flow
e Number of bits in a unit of data
e Method and timing of handshake
e Logical polarity of data and control lines

o Type of I/O statement used in the program

Note that these five categories represent only the essentials of a parallel interface. There may be other factors
to consider in individual applications, such as parity, end-of-line sequence, and creative use of interrupts.
But no amount of attention to parity or end-of-line sequence will get an interface working if the handshake or
polarity is wrong! Therefore, deal first with the five factors listed above. Extra features and special
capabilities can be added after the GPIO is properly handling the basic communication task.

Direction of Data Flow

Because an interface connects to both the computer and the peripheral device, it is important to avoid
confusion about the direction of data flow. The output of the computer is the input to the peripheral device.
All references to data direction in this section are given with respect to the computer. This is shown in the
following diagrams.

| HP-85
GPIO Computer
erface

Peripheral
Device

OUTPUT in

AN

Interface

. HP-85
Peripherat L
Device INPUT > GPIO Computer

Using the GPIO Interface 193

There are four basic choices when selecting data direction with the GPIO interface. They involve direction of
data flow and drive capability. Two kinds of output ports are available. One kind has a small drive capability
of about 2 standard TTL loads. The other kind has a larger drive capability of about 12 standard TTL loads. A
list of the data direction choices available is shown below. A detailed description of each choice is given in
the following paragraphs.

1. Bidirectional - small output drive (choose this for input-only applications)
2. Bidirectional - large output drive
3. Input and output on separate lines - large output drive

4. Output only - large output drive

Choice #1 is a bidirectional port with a small output drive capability. This type of port is recommended for
input-only operations and for bidirectional interface to light loads. A *‘light’’ load is a circuit that sources
less than 4.5 mA. Some examples are NMOS interface chips, one TTL gate with a 2.2 k{) pull-up resistor, or
CMOS gates with a 10 kQ pull-up resistor.

Choice #2 is a bidirectional port with increased output drive capability. This type of port is recommended for
bidirectional interface to heavier loads. The output drivers on this port type are open-collector transistors
rated to sink 20 mA. Any bidirectional load that sources more than 4.5 mA must be connected to this port

type.

Choice #3 is similiar to choice #2, but there is a significant difference. The bidirectional port (choice #2)
uses a common data bus for input and output. The port type of choice #3 uses one data bus for input and a
separate data bus for output. This type of port is useful when interfacing to a device that has separate input
and output lines which cannot be connected together for electrical reasons.

Choice #4 is for output-only applications. This port type uses open-collector drivers rated to sink up to 20
mA.

Number of Bits and Ports

The GPIO interface allows the selection of either 8-bit or 16-bit ports. The number of ports available depends
upon the size you choose and the data direction requirements. If you are using 8-bit ports, there can be a
maximum of four independent ports. This is twoe bidirectional ports with small output drive and two output-
only ports. Note that other configurations yield less ports. For example, if you need bidirectional ports with
large output drive, there can only be two. The reason for this will become apparent as you read the next topic
on addressing and configuration.

A similar situation exists with 16-bit ports. You can have two of them if one is output only and the other is
bidirectional with small output drive. However, any other configuration is limited to one 16-bit port.

194 Using the GPIO Interface

Using Primary Addresses

You select the type of port by specifying a primary address in your OUTPUT, ENTER, or TRANSFER
statements. In essence, each type of port is treated as a separate device and is accessed by using a device
selector. There are other ways to access a port, but they are all related t primary addresses. The primary
address can be written directly into register 5, and the default configuration switches allow any primary
address for an 8-bit port to be selected automatically at power-on or reset (refer to the Installation and Theory
of Operation manual). However, the simplest way to avoid surprises and confusion is to include the desired
primary address in your device selector when performing 1/O operations.

If you do not specify a primary address in the device selector (e. g. OUTPUT 4 ; X), the last primary address
specified is used. If no primary address has been specified since the last power-on or reset, the address set by
the default configuration switches is used.

The following tables summarize the port options available. The tables also lindicates which lines are used for
handshake and direction indication with each port type. The handshake] lines are discussed at length in
‘““Handshake Methods’’ (covered next). The direction indicator is a line used with a bidirectional port to
indicate in which direction the data is currently flowing. This line is often used for the control of tri-state
gates or selector circuits. It presents a logic low when the interface is outputting and a logic high when the
interface is inputting.

8-Bit Ports

Data Direction Primary Port Description Ha%dshake Direction

Address Lines Indicator

00 Port A CTLA/FLGA OUTA

Bidirectional;
small output drive

01 PortB CTLB/FLGB ouTB

Input to Port A

02 e CTLA/FLGA OUTA
Input and output Output from Port
on separate lines; .
large output drive o3 | Inputto Port B CTLB/FLGB | OUTB

Output from Port D

04 Port C CTLO/STO none
Output only;
large output drive

05 Port D CTL1/STH none

o | PortAorPortC CTLAFLGA | OUTA

wired together
Bidirectional;

large output drive

07 Port B and Port D CTLB/FLGB oUTB

wired together

Using the GPIO Interface

16-Bit Ports
Primary Handshake Direction
Data Direction Port D
Address ort Description Lines Indicator
1 P
08 :\-AS;O" Port A CTA/FLGA | OUTA
Bidirectional; SB* on Port B
small output drive
09 same CTLB/FLGB ouTB
LSB input on Port A
: MSB input on Port B ————
10 CTLA/FLGA
Input and output LSB output on Port C OUTA
on separate lines; MSB output on Port D
large output drive
11 same CTLB/FLGB ouTB
LSB on Port C
12 CTLO/STO none
MSB on Port D
Output only;
lar i
ge output drive 13 same CTL1/ST1 none
| Port A and Port C
14 ‘g"edBng”:' ("DSB) CTLA/FLGA | OUTA
Bidirectional, ?rt and Port
large output drive wired together (MSB)
15 same CTLB/FLGB ouUTB

Handshake Methods

A ‘“‘handshake’’ is a sequence of electrical events used to synchronize a transfer of data. There is a brief
overview of the handshake process in Section 1. With the GPIO interface, you have four basic methods of
handshake to choose from (with some variations, of course). These basic choices are:

e Full handshake e Strobe handshake

e Partial handshake e No handshake

The handshake lines on the 82940A are called FLAG (FLG) and CONTROL (CTL). The FLAG line is used
to sense the handshake signal coming from the peripheral device, and the CONTROL line is used to send a
handshake signal from the interface to the peripheral device. (The output-only ports use a line called
STATUS (ST) to perform the same function as the FLAG line.) Exactly what signals are sent and received
depends upon the handshake mode that you select. Let’s look at the details of each method.

1 Asitis used here, the abbreviation ‘‘LSB’’ stands for ‘‘Least Significant Bits’’. These are bit O thru bit 7 of the 16-bit word. Likewise, ‘‘MSB’’
stands for ‘‘Most Significant Bits’’. These are bit 8 thru bit 15 of the 16-bit word.

196 Using the GPIO Interface

Output Handshakes ‘

Output handshakes are somewhat simpler than input handshakes, so they are presented first. The following
timing diagrams show only the essential action of the DATA and handshake lines. The line used to indicate
data direction has been left out for the sake of simplicity, and not all timing relationships have been given
numeric values. More complete timing information is available in the Installation and Theory of Operation
manual. These diagrams are intended to clarify the concept of the handshake methods. The important factors
to note are the order of events and the causal relationship of events.

- o
3 7

DATA OUT DATA VALID
True — f
CTL 1D —]
False
Busy
FLG
Ready { —

Output: Full Handshake

When the full handshake cycle starts, the interface checks for a READY indication on the FLG line. If the
line is READY, the interface places a new word of data on the DATA lines (t1). After a programmable delay
time (tD), the interface places the CTL line in the TRUE state (t2). This signals the peripheral device that the
data is valid. The delay time is provided to ensure that the DATA lines are stable and valid before CTL is
asserted. This delay time is set by register 6, which is explained later. When the peripheral device sees the
TRUE state of the CTL line, it does whatever is necessary to input the data presented to it. The peripheral
device indicates that it is busy inputting data by placing FLG in the BUSY state (t3). This serves as an
acknowledgment to the interface that the CTL signal was received. Therefore, when the interface sees FLG
go BUSY, it can return the CTL signal to the FALSE state (t4). When the peripheral device has finished
inputting data, it returns the FLG line to the READY state to indicate that it is ready for the next cycle (t5).

Using the GPIO Interface 197

d frmen
1 F

DATA OUT DATA VALID
True ~
CTL tD =
False b
Busy :
FLG

Ready :

! Output: Partial Handshake

The key difference between full and partial handshake is that partial handshake does not check the FLG line
before it outputs the data. The output cycle can begin with the FLG line BUSY or READY. As in the full
handshake, the interface outputs the data (t1) and sets CTL to the TRUE state (t2) after a programmable delay
(tD). This signals the peripheral device that the data is valid. The interface then waits for the peripheral
device to indicate that it has received the data. This is the reason for the name ‘‘partial handshake’’. The
interface does not require a READY signal to start the transfer, but it does require an acknowledgment to
complete it. The peripheral device inputs the data and supplies the ‘data accepted’’ signal by holding FLG in
the READY state (t3) for at least 30 us (tH1) and then in the BUSY state (t4) for at least 35 us (tH2). Note
that although this action greatly resembles an edge-triggered event, it really is not. The minimum state times
mentioned are necessary for the interface to sense the READY to BUSY transition. Once the interface senses
the FLG signal from the peripheral device, it can return the CTL signal to the FALSE state (t5).

198 Using the GPIO Interface

DATA OUT

DATA VALID

True

CTL l«—— tD

1D —]

False

Output: Strobe Handshake

The strobe handshake for output is a very simple sequence. It is probatrly the most common handshake
method used in devices that do not implement full handshake. This method assumes that the peripheral
device is always ready and the FLG line is not used. (If your device is not always ready, then the ‘‘Output
Inhibit’’ feature can be used. This is explained in ‘‘Selecting the Handshake Method’’.) The cycle starts with
the output of data (t1). After a programmable delay (tD), the interface sets (CTL to the TRUE state (t2). This
state is held for the delay time, then CTL is returned to the FALSE state (t3). In other words, the interface

supplies data, followed by a strobe pulse to indicate that the data is valid.

The “‘no handshake’’ option does not need a timing diagram. The interface simply places new data on the

DATA lines when it becomes available. The FLG and CTL lines are not

sed. The ASSERT and STATUS

statements can be used to supply your own handshake in this mode (see ¢‘Direct Use of Control Lines’’).

Input Handshakes

One reason that the input handshakes are more complex than the output handshakes is that each input

handshake has two options for the timing of the interface’s read oper

ation. These options are called

“READY to BUSY”’ and ““‘BUSY to READY"’.! In the following diagrams, both options are shown on the
same drawing. The upper part of each diagram shows the timing that is common to both options and the

READY to BUSY timing. The lower part of each diagram shows the timing
to READY option.

! These names were derived from the state change on the FLG line that triggers the read operation in
not meant to imply that FLG lines are edge-triggered. They are not. Also, these names are used
handshakes, even though strobe handshake does not use a FLG line.

changes that pertain to the BUSY

full handshake mode. However, the terms are
to describe the timing choices for all input

Using the GPIO Interface 199

True L —
CTL
False
Busy
FLG
Ready 1 ¢
DATA IN

NEW DATA VALID

(Ready to Busy)

DATA IN

(Busy to Ready) OLD DATA VALID

t

Input: Full Handshake

READY to BUSY: When the full handshake cycle starts, the computer checks for a READY indication on
the FLG line. If the FLG line is READY, the interface requests data by setting CTL to the TRUE state (t1).
The peripheral device sees this request and places data on the DATA lines (t2). The peripheral device then
signals that the data is valid by placing the FLG line in the BUSY state (t3). When the interface sees this
signal, it inputs the data (sometime between t3 and t4). The interface then signals that it has received the data
by returning CTL to the FALSE state (t4). When the peripheral device sees that the data has been received, it
returns FLG to the READY state to prepare for the next cycle (t5).

BUSY to READY: When the full handshake cycle starts, the computer checks for a READY indication on
the FLG line. If the FLG line is READY, the interface requests data by setting CTL to the TRUE state (t1).
This signal tells the peripheral device that it can place new data on the DATA lines. The peripheral
acknowledges the CTL signal by placing FLG in the BUSY state (t2). The interface then acknowledges the
FLG signal by returning CTL to the FALSE state (t3). After all these acknowledgments are taken care of, the
peripheral device places new data on the DATA lines (t4). The peripheral device then signals that the data is
valid by returning FLG to the READY state (t5). After the interface sees this signal, it inputs the data
(sometime between t5 of this cycle and t1 of the next cycle).

200 Using the GPIO Interface

True — § S F
CTL
False
Busy -] f
FLG
(Ready to Busy) < tH1 tH2-l
Ready e
; f
DATA IN

DON'T CARE NEW|DATA VALID

DON'T CARE

(Ready to Busy)

t1 t2 t3 t4 t5
Busy —-
FLG th1 —> et
(Busy to Ready) ‘ H1 Ha
Ready -
E— +
DATA IN OLD DATA
(Busy to Ready) VALID NEW DATA VALID
A
f | +
1§l t2 i3 t4 15

Input: Partial Handshake

READY to BUSY: The primary use of this handshake method is to input data that is being sent with a strobe
handshake from the peripheral device. Partial handshake does not wait for the FLG line to be READY before
starting the cycle. Regardless of the state of the FLG line, the request for data is made by setting CTL to the
TRUE state (t1). It does not matter if the peripheral device outputs the data first or starts the strobe pulse
first. The important thing is that the data should be valid before the the end of the strobe pulse. This diagram
shows the strobe pulse starting first as the peripheral device places the FLG|line in the READY state (t2). The
data becomes valid before the end of the pulse (t3). Then the peripheral signals that the data is valid by
placing the FLG line in the BUSY state (t4). The minimum state times of 30 ws (tH1) and 35 us (tH2) are
necessary for the interface to detect this READY to BUSY transition. When the interface sees this transition,
it inputs the data (sometime between t4 and t5). The interface then indicates receipt of the data by returning
CTL to the FALSE state (t5). Note that the difference between this option and the ‘‘BUSY to READY”’
option is timing of the input operation with respect to the end of the CTL pulse, not the polarity of the FLG
pulse. Either option can be used with any polarity of FLG pulse (see ‘‘Setting the Logic Polarity’’).

BUSY to READY: This is a variation of the previous method. Regardless of the state of the FLG line, the
request for data is made by setting CTL to the TRUE state (t1). It does not matter if the peripheral device
outputs the data first or starts the strobe pulse first. The important thing is that the data should be valid before
the end of the strobe pulse. This diagram shows the strobe pulse starting first as the peripheral device places
the FLG line in the BUSY state (t2). The data becomes valid before the end of the pulse (t3). Then the
peripheral signals that the data is valid by placing the FLG line in the READY state (t4). The minimum state
times of 30 us (tH1) and 35 us (tH2) are necessary for the interface to detect the READY to BUSY transition.

Using the GPIO Interface 201

After the pulse on the FLG line is finished, the interface returns CTL to the FALSE state (t5). The interface
then inputs the data (sometime between t5 of this cycle and t1 of the next cycle). Note that the difference
between this option and the ‘“‘READY to BUSY"’ option is timing of the input operation with respect to the
end of the CTL pulse, not the polarity of the FLG pulse. Either option can be used with any polarity of FLG
pulse (see ‘‘Setting the Logic Polarity’’).

True { f
CTL to
(Ready to Busy) False
DATA IN N/ NEW DATA
Ready to Busy) VALID
t4
CTL . D
(Busy to Ready)
True
False
DATA IN OLD DATA VALID NEW DATA VALID

(Busy to Ready)

Input: Strobe Handshake

READY to BUSY: This is a simple handshake method that can be used when you are sure that your
peripheral device can provide valid data in a fixed amount of time after a request signal. The peripheral
device is not given an opportunity to acknowledge any signals or control the handshake timing in any way.
Therefore, the FLG line is not used. The cycle starts when the interface requests data by setting CTL to the
TRUE state (t1). The peripheral device then places new data on the DATA lines (t2). After a programmable
delay (tD), the interface inputs the data (sometime between t3 and t4). The interface completes the cycle by
returning CTL to the FALSE state (t4).

BUSY to READY: This is a variation of the previous method. The cycle starts when the interface requests
data by setting CTL to the TRUE state (t1). The peripheral device then places new data on the DATA lines
(t2). After a programmable delay (tD), the interface returns CTL to the FALSE state (t3). Then the interface
inputs the data (sometime between t3 of this cycle.and t1 of the next cycle).

The ‘‘no handshake’’ option does not need a timing diagram. The interface simply inputs new data whenever
a data input statement is executed. The FLG and CTL lines are not used. The ASSERT and STATUS
statements can be used to supply your own handshake in this mode (see ‘‘Direct Use of Control Lines’’).

202 Using the GPIO Interface

Selecting the Handshake Method

The handshake characteristics of the GPIO are selected by writing various codes to interface control regis-

ters. The registers of interest are control registers 4, 6, and 9. These are accessed by using the CONTROL
and STATUS statements.

Register 4 - Data Normalization and Handshake Control
Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0= Ready
Handshake to Busy Not Data Polarity
Method 1 = Busy Used (see “Slecting the Logic Polarity’)
to Ready
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Register 4 has two primary functions. The lower four bits are used to select either positive-true or negative-
true data for each 8-bit port. This is explained in ‘‘Selecting the Logic Polarity”’. The top three bits are used

to select the handshake method. The primary selection of handshake method is done with bit 6 and bit 7, as
follows:

Bit7 | Bit6 | Handshake
0 0 Full
0 1 Partial
1 0 Strobe
1 1 None

Bit 5 of this register is used to select the input timing option. Its states are defined as follows:

Bit 5 | Data Input Timing

0 READY to BUSY
1 BUSY to READY

The meaning of all these options is discussed at length in ‘‘Handshake Methods’’. The following is a
summary of all the choices, listed with the decimal value of the control byte used to select each choice.

Decimal Value
of Bit5 Handshake Method
thru Bit 7
0 Output: Full Handshake
64 Output: Partial Handshake
128 Output: Strobe Handshake
0 Input: Full Handshake; READY to BUSY
32 Input: Full Handshake; BUSY to READY
64 Input: Partial Handshake; READY to BUSY
96 Input: Partial Handshake; BUSY to READY
128 Input: Strobe Handshake; READY to BUSY
160 Input: Strobe Handshake; BUSY to READY
192 Input or Output: No Handshake

Using the GPIO Interface 203

It is possible to write the values shown directly into register 4. However, if you do that, you will also clear all
the data normalization bits. This gives all data ports a positive-true logic sense. If that does not cause any
problems, statements like the following can be used. These, and all other example statements in this section,
assume that the interface select code is 4.

COMTR !LV# . \ ! \l Set ostrobe hardshake

isc reg# control byte
COMTROL 4.4 5 28 1 Partial bodsk. doeat BUSY to BEADY
COMTEOL 4.4 5 152 U Turn off handshalke

You are encouraged to get into the habit of using comments on statements like these. The word
““CONTROL”’ followed by a bunch of numbers can be very mysterious when you look at a program some
months after it was written. Anyone who needs to support a program will be very thankful for a little bit of
information about the action of a cryptic CONTROL statement. Remember, that support person just might be
you!

Now suppose that you are concerned about affecting the normalization bits. There are two approaches to this
problem. First, and most common, is to set all the options in register 4 with the same statement. This simply
means that you determine the value of the bits used for handshake control, determine the value of the bits
used for normalization, add those two values together, and use the sum as your control byte.

If for some reason you need to change the handshake bits after the normalization bits have been set, that’s
OK. The value of bits previously in the register can easily be maintained by using a couple extra statements.
The general technique is to read the current register contents, mask out the old handshake bits, ‘*‘OR’’ in the
new handshake bits, then place the result back into the register. The following example shows the details of

this process.

204 Using the GPIO Interface

Another register affecting handshake is control register 6. This register establishes the delay time between
data output and the setting of CTL, and it establishes the width of a strobe pulse. These times are shown in
‘““Handshake Methods’’ as *‘tD”’. The value in register 6 is used to establish an additional delay time which
is added to a minimum time that is always present. The minimum times are generally around 60us, but there
are exceptions. Refer to the Installation and Theory of Operation manual for more specific details.

Register 6 - CTL Delay and Strobe Pulse Duration

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Increment
0= 10us Delay: Number of Increments
1=1ms
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

The control byte in this register contains a delay value (bit O thru bit 6) and a range selection bit (bit 7). When
bit 7 is clear, the value of the other bits is multiplied times 10 us to determine the additional delay time.
When bit 7 is set, the value of the other bits is multiplied times 1 ms to determine the additional delay time. In
other words, the lower seven bits specify how many time intervals to use, and bit 7 defines the size of each
interval. This system yields two overlapping ranges that include times from 10 us to 127 ms. Here are some
examples:

COMTREOL 4.5
COHTEOL 4.
COMTEM. 4.8

= ok Pl se

The final handshake-related register is register 9. This register has only one active bit. It is used to select the
“‘Output Inhibit’’ function. Although this feature is most often used with certain strobe handshake devices, it
can be used with any handshake method. When the Output Inhibit function is disabled, all output handshakes
work exactly as described in ‘‘Handshake Methods™’.

If the Output Inhibit function is enabled, the output sequence is slightly modified. Enabling this function
causes an additional handshake line to be assigned as an ‘‘inhibit’’ line. If the output port is using CTLA as a
handshake line, then STO becomes the inhibit line. If the output port is using CTLB as a handshake line, then
ST1 becomes the inhibit line. If the output port is already using STO or ST1 as a normal handshake line,
then the Output‘ Inhibit function cannot be used. The action of the Output Inhibit function is simple.
Before starting an output cycle, the interface first checks the inhibit line. If the inhibit line is FALSE, the
handshake proceeds in the normal manner. If the inhibit line is TRUE, the interface waits until inhibit returns
to the FALSE state before proceeding with the output operation.

Using the GPIO Interface 205

This function makes it easy to interface to devices that have a general ‘‘Busy’’ line that is not part of the
normal handshake sequence. An example is a printer with an internal buffer. This type of device often uses a
strobe handshake, since all the internal buffer needs is a pulse to latch the valid data. However, once the
buffer is full, or a line ending is received, the printer ‘‘goes busy’’ and prints the entire buffer. Buffers of this
type usually cannot print and receive data at the same time, so the GPIO interface must halt its output while
the printer is busy. Hence the use of the Output Inhibit function.

Register 9 - Output Inhibit Function

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable
Not Used Output
Inhibit
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 0 is the only bit used in this register. When bit 0 is clear (value=0), the Output Inhibit function is disabled
and no inhibit line is used. When bit 0 is set (value=1), the Output Inhibit function is enabled and the inhibit
line is assigned and monitored as described two paragraphs ago. Access to this register is shown in the
following example statements:

COMTREOL 4.5 5 10 Erakle Duteut ITnhibit
COMTROL 4.5 @8 | Don't use

Dutewt ITrkik ’:i. *

Setting the Logic Polarity

Register 3 allows you to individually determine the logic sense of each handshake line. Register 4 allows you
to individually determine the logic sense of each data port. This is a tremendous amount of flexibility. The
term ‘‘logic sense’’, or ‘‘logic polarity’’ means whether the lines are treated as positive true or negative true.
A positive-true line interprets a logic low as a ‘0’ and a logic high as a ‘‘1’’. A negative-true line interprets
alogic low as a ‘“1’” and a logic high as a “‘0”’. Note that if you change the normalization of any CTL line,
the line changes states immediately after the normalization bit is changed in the control register.

Register 3 - Handshake Line Normalization

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Invert Invert Invert Invert Invert Invert Invert Invert
ST1 STO FLGB FLGA CcTL1 CTLB CTLO CTLA

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Each bit in this register corresponds to one handshake line. When a bit is *“0’’, its corresponding line is
positive true. When a bit is ‘*1’’, its corresponding line is negative true. In other words, each bit is used to
enable or disable an inversion for its corresponding line. The following table shows the polarity definitions of
the handshake lines. ’

206 Using the GPIO Interface

Line Type. | Normalization Bit Logic Sense
0 Logic HI = BUSY
Logic LO = READY
FLG
or ST) 1 Logic HI = READY
Logic LO = BUSY
0 ‘ Logic HI = TRUE
CTL Log!c LO = FALSE
1 Logic HI = FALSE
Logic LO = TRUE

Here are some example statements:

COMTROL 4.3

1B D Inwvert DTL limes

COHHTREOL 4.3 o lrewwrt Port 0 b lines
CORMTEOL 4.3 Podrwert FLGA and FI
Register 4 - Data Normalization and Handshake Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
o || e | R | e
(see “Selecting the Handshake Method”) Used Data Data Data Data
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

This is the same register 4 discussed in ‘‘Selecting the Handshake Method’’. This time we are interested in
the lower four bits. Each of these bits corresponds to one of the data ports. When a normalization bitis ‘0",
all the data lines on the corresponding port ate positive true. When a normalization bit is ‘“1°’, all the data
lines on the corresponding port are negative true.

Because this register contains normalization bits and handshake control bits, you should pay particular
attention to what you are doing when you write to it. As was mentioned in ‘‘Selecting the Handshake
Method”’, the cleanest approach is to set all the options with one statement. This simply means that you
determine the value of the bits used for handshake control, determine the value of the bits used for port
normalization, add those two values together, and use the sum as your control byte. For example, assume
that you wanted to output negative true data from Port A using strobe handshake. The handshake control
value is 128. To invert the data lines on Port A, a value of **1”’ is used. The total of these two values is 129.
Therefore, the following statement would be used:

isc reg# control byte

Using the GPIO Interface 207

If for some reason you need to change the normalization bits after the handshake bits have been set, you can
use the masking technique discussed in ‘‘Selecting the Handshake Method’’. The following examples show
two methods of isolating normalization bits. The first example sets Port A and Port C to negative true, set
Port B and Port D to positive true, and leaves the handshake control bits unchanged.

The second example shows how the normalization of a singe port can be changed without effecting any other
bits in the register.

Why Won’t This Thing Output?

So far you have seen how to set the method, timing, and polarity of handshake, how to set the logic polarity
of the data, and how to address a port of the proper size, direction, and drive capability. This is enough
information to get most of the ports working, but there is an extra little ‘‘trick’’ needed to activate the output
drivers on Port A and Port B.

The GPIO interface has protection mechanisms buil\t in that must be satisfied before Port A or Port B will
output. The reason for this is to ensure that the output drivers are not accidentally activated while they are
grounded or connected to current-sourcing circuitry. If the GPIO is trying to drive a device that is also trying
to drive the GPIO, an electrical conflict results that will only be resolved by the death of one set of drivers. In
other words, don’t try an output operation on an input port. Without safeguards, this could happen as the
result of a simple typing error when entering a device selector.

Although it is impossible to completely prevent human error, it is unlikely that you will accidentally generate
an output from Port A or Port B. To enable the output drivers of Port A or Port B, you must set an enable bit
in register 8. To set any enable bits in register 8, switch 4 of the default configuration switches must be on.
The details on accessing and setting this switch are in the Installation and Theory of Operation manual.
Trying to write to register 8 without first setting this switch results in Error 115.

208 Using the GPIO Interface

Register 8 - Output Enable for Port A and Port B

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Not Used Port B Port A

Outputs Outputs

Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1

Assuming that switch 4 has been properly set, the following example shows an output enable operation for
Port B.

COMTHEOL 4.8 & 2 ! Ernable Port B outeut

Choosing the Method of Transfer

The basic software link with the GPIO interface is the program statement used to perform the I/O operation.
Assuming that you have studied Parts I, II, and III of this manual, choosing the proper statement is usually a
simple matter. Some of the factors to be considered are reviewed here to help refresh your memory.

If you are using an 8-bit port and dealing with ASCII data, most of your needs can be met with simple
OUTPUT and ENTER statements. For example, string data is output to Port B by the following statement:

DUTRLT <481 & A
The following statement inputs a number that is being sent to Port A as an ASCII representation:
EMTER <88 ; H

If straight binary numbers are being transferred, you will probably want to suppress the end-of-line sequence
and use binary formatting. An 8-bit binary number can be output to Port C as follows:

CLITEUT 48 LEETHG "#.0BY 5 8

The following is an example of inputting a 16-bit binary number from Ports A&B using Port A handshake
lines:

If you are using 16-bit ports without the ‘“W*’ image, be careful to move an even number of bytes.
Attempting to move an odd number of bytes through a 16-bit port generates Error 113. A common oversight
is trying to output data using free-field format. If your 16-bit data is stored as a string, the string must contain
an even number of bytes and a ‘‘K’” image should be used.

Using the GPIO Interface 209

All /O formatting capabilities are available for use with the GPIO interface. An image is used in the
following example to output a column of numbers using the output side of the Port B/Port D combination:

OUTFUT &85 LETHG »42 D0 - 5 RGB. O

The details of alternate transfer methods, such as fast handshake or interrupt transfer, are covered next.

Advanced Capabilities
The first half of this section dealt with the basic characteristics of a parallel interface. This half covers the
extensions to those capabilities that are provided by the 82940A interface. These extra features are:

o Specialized transfers: fast handshake and interrupt

e User-defined end-of-line sequences

o Sensing and controlling individual handshake lines

e Parity generating and checking

o Using external events to generate interrupts

e A trigger-byte function for transfer control

FHS and INTR Transfers

In addition to the normal OUTPUT and ENTER statements, the GPIO interface can be used with TRANS-
FER...FHS and TRANSFER...INTR statements. No special configuration is necessary to use INTR trans-
fers. Simply set the control registers as you would for a normal OUTPUT or ENTER. The GPIO interface
accepts DELIM and COUNT terminating conditions for an input transfer, but EOI is not defined. Transfer
speeds are limited to about 400 bytes/sec using this method. The following example program shows the use
of an interrupt transfer to input string data using full handshake and positive-true logic on Port A.

210 Using the GPIO Interface

Notice that the TRANSFER statements have a “DELIM 10’’ parameter. Ten is the value of a line-feed
character. This is a common delimiter when dealing with string data because it allows the TRANSFER to
terminate at the end of each line of incoming text. Without the DELIM parameter, the TRANSFER would not
terminate until the buffer was full. Another point to remember about buffers is shown in line 140. The
incoming data could be viewed by simply printing B$. However, this approach would leave data in the
buffer. When more data came in, it would be appended to the existing data until an ERROR 126 was
generated. Since this is usually not the desired action, the buffer should be emptied after each TRANSFER.

ENTERing from the buffer is one way to empty it (as shown in the example). Another way to empty a buffer
is to re-execute the IOBUFFER statement. For example:

148 FRIMT B#
Pog TORUFFER EE 1 Emetr buffer

Performing an IOBUFFER is faster and simpler than performing an ENTER, but it also clears any CON-
VERT values you may have established. If this is not acceptable, the third choice is to perform a CONTROL

to the buffer’s pointers. This is the fastest way to ‘‘empty’’ a buffer, although the statement is somewhat
cryptic. The following is an example:

148 FRINT B

LEE COMTROL BE.O & 1.8 | Fapty buffer

ABORTIO, ASSERT, HALT, RESET, and STATUS statements can be executed during an interrupt trans-
fer. These statements take affect immediately and are the only statements that do so. All other interface-
controlling statements (such as CLEAR, CONTROL, ENTER, OUTPUT, or another TRANSFER) wait until
the end of the current transfer before taking effect. Therefore, the GPIO interface can only do one TRANS-
FER at a time. (ENTER from a buffer or OUTPUT to a buffer are not interface-controlling statements and can
be performed at any time.)

The fast handshake transfer is a special case. In order to achieve maximum speed, certain constraints are
placed on this transfer method. A FHS transfer is allowed for 8-bit data only. This TRANSFER type must use
the Port A/Port C bidirectional configuration (primary address 06). Only full handshake is allowed, with
FLGA and CTLA as the handshake lines. Normalization changes for FLGA, CTLA, Port A and Port C are
allowed, but alternate handshake methods or port configurations cannot be used. A COUNT terminating
condition can be specified for an input TRANSFER, but EOI is not defined. Transfer speeds of about 18 000
bytes/sec can be achieved using this method. :

Because a FHS transfer locks out all interrupts (including the RESET key) and a full handshake is used, the
computer can be completely ‘‘hung’’ or ‘‘locked up’’ if the peripheral device stops handshaking before the
TRANSFER is complete. To help deal with this problem, a special feature has been added to the GPIO
interface. A FHS transfer can be aborted by placing the STO line in the TRUE state. This can be done by an
operator with a pushbutton or by a control line from the peripheral device. If STO is asserted during a FHS
transfer, the transfer is aborted, ERROR 114 is generated, and the program stops. If you wish to trap this
event and keep the program running, use an ON ERROR statement.

Using the GPIO Interface 211

‘ EOL Sequence

In its default state, the GPIO interface outputs a carriage-return/line-feed as the end-of-line (EOL) sequence.
This sequence is sent at the end of each OUTPUT statement and whenever it is called for by an IMAGE
statement. If you desire a different EOL sequence, any sequence up to seven characters long can be
programmed by using the CONTROL statement. The EOL sequence is controlled by registers 16 thru 23.
Register 16 holds a number O thru 7. This is the number of EOL characters in the sequence. The characters
themselves are stored starting in register 17. For example, the default sequence has the value 2 (number of
characters) in register 16 and the character values 13 (carriage-return) and 10 (line-feed) in registers 17 and
18, respectively. Although these registers can be changed using the CONTROL statement, they cannot be
examined with the STATUS statement. In other words, they are write-only registers.

The following program statement redefines the EOL sequence to be four control characters: bell, carriage-
return, line-feed, DC3.

COMTROL &40 06 5 4.7 13 1d. 10

It is important to note that the EOL sequence is also sent at the end of an outgoing TRANSFER operation. If
you don’t pay close attention to the contents of the buffer, this can produce an extra, unwanted carriage-
return/line-feed. For example:

THTE

This program sequence outputs the word ‘‘Hello’” followed by a carriage-return/line-feed and an EOL
sequence. The carriage-return/line-feed is placed in the buffer by the OUTPUT statement. The EOL sequ-
ence is added by the GPIO after it sends the buffer contents. To avoid this duplication, one of the EOL
sequences must be suppressed. To suppress the carriage-return/line-feed in the buffer, the following change
can be made. This change uses an OUTPUT image to place the string into the buffer without any EOL

characters.
‘ 18 TORIFFER MAE
: GLITRLET L tHG "kt fHello®

212 Using the GPIO Interface

To suppress the EOL sequence sent by the GPIO, the following change can be used. This change writes a
value of zero to register 16, which tells the interface to output zero EOL characters. Unless you need an EOL
sequence different from carriage-return/line-feed, this method is the most convenient of the two. It is
especially handy when transferring strings and text, since blank lines (null strings) can be output without
worrying about transferring an empty buffer.

18 TORUFFER Af
SECOMTREOL 4,068 & 8 ! Use mo FOL characters
IE OOUTFUT A% & "Hellao"

48 TRAMEFER A TO 48 THTR

Note that the programmable EOL sequence is sent to 8-bit ports only. When 16-bit ports are used (primary
addresses 08 thru 15), no EOL bit patterns are sent. You do not need to suppress the EOL sequence when
using 16-bit data, just be aware that it is not sent.

Direct Use of Control Lines

The state of all the GPIO handshake lines can be monitored and controlled by using the STATUS and
ASSERT statements. An ASSERT statement can set the state of any CTL or RESET (RES) line. The
STATUS statement can read the state of any FLG, ST, or CTL line. The following registers are associated
with these lines.

Register 2 (read) - Line Status

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
ST1 STO FLGB FLGA CTLA CTLB CTLO CTLA

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1

‘Assertion Control and Register 2 (write)

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RESB RESA Not Used CTLt CTLB CTLO CTLA

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

Using the GPIO Interface 213

The following simple example shows a method of checking a handshake line. This program reads register 2
and checks the state of ST1. If ST1 is FALSE, the program loops back and continues checking. When the
ST1 line is TRUE, the program takes an alternate path. This example just beeps and goes back to the main
loop. In actual application, the BEEP statement would be replaced by whatever action is appropriate as a
response to the line being monitored.

Register 2 returns the logical state of the lines, not necessarily their electrical state. Therefore, a line state
shows as ‘‘1°” if that line is TRUE. It does not matter if a logic HI or a logic LO has been defined as the
TRUE state (see ‘‘Setting the Logic Polarity’’).

The ASSERT statement has a similar definition. If you set a bit to “‘1’’, the corresponding line is placed in
the TRUE state. That TRUE state might be a logic HI or a logic LO, depending upon the normalization bits in
register 3. The RES lines do not have normalization bits and are always negative true. If you use a bit value
of ““1”’ to ASSERT a RES line, that line is placed in the logic LO state.

The following example shows the use of an ASSERT statement to produce a custom handshake sequence.
This example sets the CTLA line TRUE, outputs a byte, waits 500 ms, then sets CTLA FALSE. Notice that
to control the handshake line directly, the interface handshake options must be turned off.

The following example pulses RESA and RESB.

The outgoing control lines can also be set by using a CONTROL statement directed to register 2. However,
the action of a CONTROL statement does not take effect until the current process of the interface is
completed. The ASSERT statement, like the STATUS statement, takes effect immediately.

214 Using the GPIO Interface

Parity

The GPIO interface provides both parity generation and parity checking. Parity is a simple method of
detecting erroneous transmissions of data. It uses one bit of data as an indicator which is set or cleared
according to known rules. If the sender and receiver are both using the same set of rules, any disagreement in
the state of the parity bit indicates a possible transmission error. The GPIO can only use parity with 8-bit
ports and data that has 7 bits (or less). The most common data type that fits these requirements is the ASCII
character set.

There are five parity choices on the GPIO.

e ZERO parity
e ONE parity

e EVEN parity
e ODD parity

o NO parity

If ZERO parity is selected, all outgoing characters have “‘0’’ in their eighth bit. All incoming characters are
checked to make sure that the eighth bit is ““0’’. If any incoming character has ‘“1°’ in the top bit, a parity
error is generated. ONE parity is similar to ZERO parity, except that the eighth bit is set to *“1°* for outgoing
data and checked for ““1’” on the incoming data.

EVEN parity and ODD parity are more sophisticated than that. The object of these methods is to ensure that
all data bytes have an even or odd number of ““1°* bits in them. For example, consider the letter ‘“A”’ being
output with odd parity. The bit pattern for this character is ‘‘01000001°°, There are two bits set to *“1°°.
When odd parity is applied to the character, the top bit is set so that there are an odd number of 1’s. The
resultant pattern is ‘*11000001°°. EVEN parity operates in a like manner, except that the top bit is used to
guarantee an even number of ‘‘1°* bits. If an incoming byte does not have the proper number of 1’s in it, a
parity error is generated.

A parity error can be detected in two ways. If an incoming character generates a parity error, its eighth bit is
set to ““1’’. This can be detected by the BIT function. Also, if the character is printed or displayed on the
HP-85, the top bit shows up as an underline. The second way to detect parity is to use an ON INTR statement.
This is explained in ‘‘Event Interrupts’’.

The parity function is selected by control register 0. The desired parity mode is specified by using a
CONTROL statement to set one of the lower four bits. The current parity mode cannot be read by using a
STATUS statement. Reading the status of register 0 always results in the value ‘“4’’, which is the interface
ID code.

Using the GPIO Interface 215

Register 0 (write) - Parity Control

Most Significant Bit Least Significant Bit
Bit 7 Bit6 Bit 5 Bit 4 Bit3 Bit2 Bit 1 Bit0
Enable Enable Enable Enable
Not Used OoDD EVEN ONE ZERO
Parity Parity Parity Parity
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Here are some examples of parity selection:

COMTREOL <4.8 & 8 1 Use OO0 earity
COMTREOL 4.8 5 8 U Turn OFF rarite

If more than one parity mode is selected, the one occupying the lowest bit position has preference. For

example, if you try to select both EVEN and ODD parity, EVEN parity will be used. If you try to use parity
with 8-bit data, the top bit of the data will be replaced by the parity bit.

Event Interrupts

There are two kinds of interrupts available with the GPIO interface. One kind is used for INTR transfers.
This kind is handled automatically by the computer and interface. All you need to do is specify *“INTR’’ in
your TRANSFER statement and provide an ON EOT statement. The other kind of interrupt is used for ON
INTR programming. This kind requires more involvement from the programmer and is referred to as an
‘‘event interrupt’’.

The following is a summary of the steps necessary to use event interrupts with the GPIO.
1. Have an interrupt service routine in your program that performs the desired tasks as a result of the
interrupt.
2. Provide an ON INTR statement to direct the program to the service routine in the event of an interrupt.
3. Use an ENABLE INTR statement to select the event(s) that you want to cause an interrupt.

4. When an interrupt takes the program to the service routine, read the STATUS of register 1. This lets
you determine the cause of the interrupt and is a necessary part of the interrupt-handling protocol.

5. If you are expecting further interrupts, do another ENABLE INTR on the same line as the RETURN
statement in the interrupt service routine.

Events that can cause an interrupt are selected and detected by using register 1. These events and their
corresponding bit positions are shown in the following diagram.

216 Using the GPIO Interface

Register 1 - Interrupt Enable/Cause

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ST1 STO FLGB FLGA Not Used Parity Error | Not Used
Interrupt Interrupt Interrupt Interrupt Interrupt
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value = 8 Value=4 | Value=2 | Value = 1

The first example shows the simplest form of interrupt handling. This program counts pulses on the FLGA
line by using interrupts. Each time FLGA goes TRUE, an end-of-line branch directs the program to the
interrupt service routine (line 120). This routine performs the necessary STATUS 4,1 statement, waits for the
end of the pulse, increments a counter, enables the interface for the next interrupt, and then returns to the
main program. The main program simply monitors the counter and beeps when a count of 10 is reached. In
actual applications, an action more significant than beeping would be included. For example, the interrupt
might be generated by a photocell detector that is counting items moving on a conveyor into a packing carton.
When the proper number of items is in the carton, the main program might send bit patterns to an output port
that controls the folding and sealing of the carton.

When dealing with interrupts in real-life applications, it is very important to consider the timing of the
interrupt pulse. Both the width and the frequency of the pulse are important factors. The number of interrupts
per second that can be handled depends greatly upon the amount of processing being done in the interrupt
service routine and the amount of time spent on the lines in the main program. To get the fastest response
time, keep the processing in the service routine to an absolute minimum. It is also helpful to keep the main
program moving from line to line as fast as possible. This can be done by coding efficiently and by not using
the ““@’’ symbol to combine statements on a line. In any event, it is unlikely that you will be able to handle
interrupts that are more closely spaced than 25 ms or so.

Interrupt processing can be adversely affected by pulse widths that are too long or too short. An interrupt
pulse must be over 100 us long for the interface to ‘‘see’’ it under ideal conditions. If the interface is busy

Using the GPIO Interface 217

with other tasks, such as handling data or communicating with the computer, even longer pulses are neces-
sary. However, if the interrupt pulse is too long, the same pulse can cause more than one interrupt. This
happens if the computer makes it through the interrupt service routine and re-enables interrupts before the
pulse has ended. This problem does have a solution, as shown by lines 140 and 150 in the preceding example.
If you expect a relatively long pulse, you can use the STATUS statement to ensure that the pulse has ended
before re-enabling for more interrupts. When this technique is used, the only disadvantage of long interrupt
pulses is that they will slow down the program.

Not all event interrupts are based on pulses. A handshake action is sometimes employed. In these applica-
tions, the interrupting device holds its line TRUE until the interface sends a signal that clears it. When this is
the case, the interrupt service routine can use ASSERT statements to cause the peripheral device to “‘drop”’
its request before interrupts are re-enabled.

The next example shows the detection of more than one interrupt cause. Assume for this example that the
HP-85 is controlling a test station. This is a hypothetical test for circuit reliability at certain temperatures.
The example program does two things. The main loop sends data to the circuit under test and reads the
response. If the response is equal to the data sent, the circuit is OK. This operation uses full handshake on the
Port A/Port C combination,

The interrupt service routine runs the temperature controller. An interrupt from STO indicates that the heater
must be turned on, while an interrupt from ST1 tells the computer to turn the heater off. The heater is
controlled by bit 0 in Port D. This operation uses strobe handshake.

Admittedly, a simple thermostat could be set up without involving the computer. This example merely
demonstrates some principles of handling interrupt-driven events. In actual applications, you will probably
be doing something more complex than turning a heater on and off.

218 Using the GPIO interface

Notice that a binary image is used for all I/O statements because actual binary values are being handled, not
ASCII representations. Primary address 03 is used to access Port D so that FLGB and CTLB are used for
handshake. If primary address 05 were used, there would be a conflict between the use of ST1 as an interrupt
line and as a handshake line. Notice also that register 4 defines the handshake mode for all ports on the
interface. Line 200 sets up a strobe handshake for the Port D operation. Then line 220 re-establishes the full
handshake mode that is needed by Port A and Port C in the main routine.

The previous example assumed that the two interrupts would never occur at the same time. This is not always
the case. Many applications need to handle multiple interrupts that may occur in any order or in any
combination. To deal with this situation, it is recommended that you employ a carefully structured polling
routine. The need for proper polling is especially critical since the HP-85 does not have a priority system for
interrupts (see ‘‘Interactions and Permutations’” in Section 9). The recommended polling technique is shown
in the following example.

This program uses interrupts from STO, ST1, and FLGB to demonstrate the concept of polling. When an
interrupt occurs, the program branches to line 100. The required STATUS statement reads the interrupt cause
register. Note that only one STATUS 4,1 statement is used. The interrupt cause register is automatically
cleared when it is read. Therefore, attempts to identify multiple causes by repeatedly reading register 1 would
be futile. This is not a problem since the register contents are placed in variable ‘‘S’’, where they can be
inspected as often as necessary. Variable ‘‘S’’ is tested by the BIT function to isolate the interrupt causes.
The IF...GOSUB structure is the simplest and least confusing method of dealing with multiple causes. This
technique allows all causes to be tested before returning to the main program and yields independent
subroutines for handling each cause. If two or more interrupts occur simultaneously, the one that is tested
first in the polling routine will be serviced first.

Using the GPIO Interface 219

Note: Do not use FLG or ST interrupts and the TRANSFER statement at the same time. During a
TRANSFER, the interface’s resources are dedicated to the data movement operation. An external
interrupt is not recognized during a TRANSFER. If a FLG or ST interrupt occurs at the end of an
incoming TRANSFER, the computer and interface might “lock up”.

Parity error is the only event interrupt that is recognized during an interrupt TRANSFER. Interrupts for FLG
and ST lines should be disabled before a TRANSFER starts and re-enabled (if desired) after the TRANSFER
completes. Any form of event interrupt may be used in conjunction with OUTPUT and ENTER statements,
but remember that the end-of-line branch is not taken until the OUTPUT or ENTER statement completes.

The Trigger Function

An elegant feature of the 82940A is its ability to initiate actions upon the detection of a trigger byte. The
GPIO interface can input and inspect data without interacting with the computer, thereby freeing computer
time for other operations. The trigger byte is defined by a CONTROL statement. Incoming data can be tested
for “‘less than’’, ‘‘greater than’’, or ‘‘equal to’’ the trigger byte, or any combination of these conditions.
When a trigger condition is detected, the interface can initiate an interrupt transfer or signal the peripheral
device with a CTL line. The registers involved are register 5 and register 7.

The trigger byte itself is written into or read from register 7. The following statement defines the binary value
127 as the trigger byte:

COMTEOL 4.7 & 127

The trigger actions are established by the top four bits in register 5. The lower four bits of this register hold
the currently-assigned primary address. As was the case for register 4, writing only high-order bit values will
clear the lower bits. However, if primary addresses are included in the OUTPUT, ENTER, or TRANSFER
statements, register 5 will be updated automatically for every operation. This means that you don’t have to
worry about those lower four bits if the primary addresses are included in your program. If you are concerned
about preserving the primary address in register 5 for some special reason, use a masking technique like the
one explained in ‘‘Selecting the Handshake Method’’.

Register 5 - Primary Address and Trigger Action

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Trigger Trigger Trigger if Trigger,
If Data If Data If Data Pulse Primary Address
<R7 =R7 >R7 CTL

Value = 128} Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

220 Using the GPIO Interface

The trigger compare bits can be summarized as follows:

Comparison Test | Register 5 Value
Data > Register 7 32
Data = Register 7 96
Data < Register 7 128
Data < Register 7 192
Data = Register 7 64
Data # Register 7 160
No Trigger 0

The primary trigger function is to initiate an interrupt transfer. The following example establishes an
interrupt transfer that begins when the interface detects a DC2 control character (decimal value 18) and ends
when the buffer is full. Port A of a Port A/Port C combination is used for the input.

In addition to initiating a TRANSFER, the trigger function can also signal a peripheral device that the trigger
byte has been detected. The signal is a short pulse on a CTL line. If FLGA/CTLA are being used as the
handshake lines, the pulse is sent on CTLO. If FLGB/CTLB are being used as the handshake lines, the pulse
is sent on CTL1. The line is pulsed from FALSE to TRUE and back to FALSE, with normalization changes
allowed. The pulse width is roughly 40 us.

This function, called ‘‘auto response’’, is enabled in register 5. If bit 4 of register 5 is set to “‘1’’, the
appropriate CTL line will be pulsed when an incoming byte meets the trigger byte requirements. If bit 4 is

“0’’, the auto response function is disabled. To enable this function, add 16 to the values shown in the

preceding summary table.

Using the GPIO Interface 221

Note that this feature is available in addition to the automatic start of a TRANSFER. Auto response cannot
be selected without setting up a TRANSFER of at least one byte. The following example shows the minimum
software required to produce an auto response pulse. This example is inputting data from Port A and using
CTLO as the auto-response line. The pulse will be sent when the first control character (value<(32) is input.

This example can be enhanced to produce a CTLO pulse for every trigger condition detected, instead of just
the first. Assume that you want an auto response pulse for each form-feed character (value= 12). The EOT
routine is changed to empty the buffer and start a new TRANSFER.,

222 Using the GPIO Interface

GPIO I/O Statements

Statement

Description

ABORTIO

ASSERT

CLEAR

CONTROL
ENABLE INTR
ENTER

HALT

OUTPUT

RESET

SEND

STATUS

TRANSFER

Aborts any interrupt transfer in progress, sets all CTL lines to the FALSE state, places
ports A and B in the high-impedance state, and sets ports C and D to the OFF state.

Immediately writes a value to control register 2, placing the CTL and RES lines in the
specified states.

Pulses RES line(s). CLEAR 4 pulses both RESA and RESB. CLEAR 400 pulses‘RESA;
CLEAR 401 pulses RESB (assuming that 4 is the interface select code).

Writes values to the interface control registers.
Writes enable mask to control register 1. Used to select event ihterrupts.
Enters data from a port to the BASIC program.

Stops any interrupt transfer in progress, leaving all handshake lines in their current
state. Thus, STATUS can be used to troubleshoot a faulty handshake sequence.

Outputs data from the BASIC program to a port.

Places interface in the power-on state. CTL lines are FALSE, OUTA and OUTB indicate
output, ports A and B are put in high-impedance state, ports C and D are OFF.

SEND...CMD can set primary address or pulse RES line(s) with Device Clear. SEND
...DATA outputs data bytes and EOL if specified. SEND...LISTEN or SEND...TALK can
set primary address. UNL, UNT, MLA, MTA are ignored; SCG generates ERROR 111.

Reads values from interface status registers.

Moves data from a port to a buffer or from a buffer to a port. Interrupt or fast handshake
may be used.

Using the GPIO Interface 223

‘ GPIO Interface Errors

Error No. Meaning Possible Cause

113 Word cut in half during a 16-bit Odd byte count specified in an
operation. image or COUNT parameter. Also
beware of odd-length buffers

and free-field format.

114 FHS transfer was aborted | TRUE state on STO0. See “FHS
by STO. and INTR Transfers.”

115 Output to Port Aor Port B is not Using the wrong primary address
allowed. in an output operation. Not
enabling the proper bit in
register 8. Attempting to write

to register 8 when switch 4 is

not properly set. Switch 4 is
explained in the Installation

and Theory of Operation Manual

116 CTL line not in proper state to A previous ASSERT or CONTROL

start handshake. statement that left CTL in the

TRUE state. CTL must be in the

. FALSE state at the start of an
handshake operation.

224

226

Syntax Reference

Conventions Used to Represent Syntax

This reference section uses two methods of representing the syntax of I/O ROM statements. The conventions
of each form are as follows.

Pictorial Representation

All items enclosed by a rounded envelope must be entered exactly as shown. Items enclosed by a rectangular
box are names of parameters used in the statement. A description of each parameter is given in the text
following the drawing. Statement elements are connected by lines. Each line can only be followed in one
direction, as indicated by the arrow at the end of the line. Any combination of statement elements that can be
generated by following the lines in the proper direction is syntactically correct. A statement element is
optional if there is a valid path around it. This form of syntax representation is easy to use, and in some cases,
more formally correct than the alternate form described next.

Linear Representation

This form of syntax representation is included to be compatible with previous HP-85 manuals. Many users
are accustomed to seeing this form. If both forms are new to you, it is recommended that you concentrate on
the Pictorial form.
OO7T MATREIM @ All items shown in dot matrix must be entered exactly as shown.
[1 : Items within square brackets are optional.

| : A vertical line between two items reads as ‘‘or’’; only one of the items

may be included.
Three dots indicate that successive parameters are allowed.

{ } : Braces are used to indicate a group of items from which one item must

be chosen.

227

228

Syntax Reference

ABORTIO

Syntax

interface
(ABORT 10) select code[

AEORT IO interface select code

Example Statements

100 ABORTIO 7
250 IF S<128 THEN ABORTIO SO

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

All interfaces: Terminates any interrupt TRANSFER in progress. Performing an ABORTIO on an interface
with an active transfer and EOT branching enabled causes the branch to be taken.
HP-1B:

e System Controller: Sends Interface Clear (IFC) and Remote Enable (REN).

e Active Controller (but not System Controller): Sends Attention (ATN) and My Talk Address (MTA).

e Non-controller: Stops handshaking data and becomes ready for next operation,
Serial: Turns off all modem control lines (control register 2).
BCD: Stops handshaking data, sets CTL lines false, and places external data lines in high-impedance state.

GPIO: Stops handshaking data, sets control lines false, places ports A and B in high-impedance state, and
sets lines from ports C and D to false state.

Related Statements

HALT
ON EOT
RESET

Syntax Reference 229

ASSERT

Syntax

intertace
-»Gsser@-» Selectcode——»@-—»— byte o=

HzEERT interface select code i byte

Example Statements

100 ASSERT 7 ; 12
210 IF Al=128 THEN ASSERT S ; X

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
byte — a numeric expression that evaluates to an integer 0 thru 255. Binary value of the byte is used to set or
clear the lines to be asserted.

Actions Taken

HP-1B: Immediately writes the value of the byte to control register 2. IFC bit (247, decimal 128) is ignored
(use ABORTIO).

Serial, BCD, GPIO: Immediately writes the value of the byte to control register 2.

Related Statements

ABORTIO
CONTROL

230

Syntax Reference

BINAND

Syntax

BINAND } a | integer ——>®—> integer)

BIMAMD Cinteger . integer:

Example Statements

10 B1=BINAND(X1,15)
100 PRINT BINAND(I,N*2"3)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

BINAND is a function that returns the 16-bit binary AND of two integer values. Each bit of the result is
calculated using the corresponding bit of each argument, according to the following truth table:

Arg.1 | Arg.2 | Result

0 0 0
0 1 0
1 0 0
1 1 1

Related Statements

BINCMP
BINEOR
BINIOR
BIT

Syntax Reference 231

BINCMP

Syntax

BINCMP integer —P-@-—»

EIMCMF {integer?

Example Statements

100 C=BINCMP (X1)
120 PRINT BINCMP (N*2"3)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

BINCMP is a function that returns the 16-bit binary complement of an integer value. Each bit of the result is
the inverse of the corresponding bit in the argument. If the argument has less than 16 bits, leading zeros are
assumed.

Related Statements

BINAND
BINEOR
BINIOR
BIT

232

Syntax Reference

BINEOR

Syntax

->{ BINEOR (integer | ’ integer ‘—F'@—V

EIMEDR (integer . integer:

Example Statements

20 B1=BINEOR (X1,15)
140 PRINT BINEOR(I,2"N)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

BINEOR is a function that returns the 16-bit binary exclusive OR of two integer values. Each bit of the result
is calculated using the corresponding bit of each argument, according to the following truth table:

Arg.1 | Arg.2 | Result

0 0 0
0 1 1
1 0 1
1 1 0

Related Statements

BINAND
BINCMP
BINIOR
BIT

Syntax Reference

BINIOR

Syntax

BINIOR o integer ’ integer)

BEIMIOR finteger . integer:

Example Statements

30 Y=BINIOR (X1,255)
160 DISP BINIOR(I,2"N)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

BINIOR is a function that returns the 16-bit binary inclusive OR of two integer values. Each bit of the result
is calculated using the corresponding bit of each argument, according to the following truth table:

Arg.1 ' Arg.2 l Resuit

0 0 0
0 1 1
1 0 1
1 1 1

Related Statements

BINAND
BINCMP
BINEOR
BIT

233

234

Syntax Reference

BIT

Syntax

. bit
BIT 0 Integer ""@"‘ position r‘*‘@—’

BIT <integer . bit position

Example Statements

40 Y=BIT (X3,7)
180 IF BIT(N,ZAI) THEN GOTO 220

Parameters

integer — a numeric expression that evaluates to an integer -32 768 thru 32 767.
bit position — a numeric expression that evaluates to an integer O thru 15. Least-significant bit is in position
0, most-significant in position 15,

Action Taken

BIT is a function that returns the value of one bit in an integer argument. Result of the function is TRUE if bit ‘
is set, FALSE if bit is clear.

Related Statements

BINAND
BINCMP
BINEOR
BINIOR

Syntax Reference 235

BTD
Syntax
BTD (| string)
ETD string

Example Statements

20 X=BTD (HS&L$)+Al
130 DISP BTD("11000001")

Parameters

string — a string expression that contains the base 2 representation of an integer. Limited to 16 significant
characters that must be <‘1°* or “‘0”’.

Action Taken

BTD is a function that returns the value of a base 2 representation contained in the string argument. The
argument is a character representation and the result is a numeric quantity.

Related Statements

DTB$
DTH$
DTO$
HTD
OTD

236 Syntax Reference

CLEAR

Syntax

device
selector

L-L.EFAF device selector [: device selector]...

Example Statements

60 CLEAR 3
250 CLEAR S*100+D1,S*100+D2

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’). If multiple device selectors are specified, they
must all be on the same interface select code.

Actions Taken

HP-IB: Must be Active Controller. Leaves ATN true; use RESUME if you wish to set ATN false.
e If device selector is only an interface select code, interface sends a Device Clear (DCL).

e If device selector contains a primary address, interface sends a Selected Device Clear (SDC).
Serial, BCD: Error
GPIO:

e If device selector is only an interface select code, interface pulses RESA and RESB.

e If device selector contains an even primary address, interface pulses RESA.

e If device selector contains an odd primary address, interface pulses RESB.

Related Statements

CONTROL
SEND

‘ CONTROL

Syntax
interface |
CONTROL select code
buffer

Example Statements

10 CONTROL 9,1 ;
50 CONTROL S,R ;

Parameters

register
number

c1,c2,C3,C4,C5,C6
C(R)

control
byte

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
buffer — the name of a string variable that has been declared as an IOBUFFER.

Syntax Reference

i1 {interface select code| buffer}, register number; control byte[, control byte] ...

register number — a numeric expression that evaluates to an integer O thru 23. Must specify a valid control

register for the selected interface.

control byte — a numeric expression that evaluates to an integer O thru 255. Binary value of byte is used set

and clear bits in the control register.

Action Taken

CONTROL writes one or more control bytes to interface or buffer control registers. The register number

specifies the first register to be used. If multiple control bytes are specified, they are stored in consecutive

control registers, beginning with the specified register number.

Related Statements

ABORTIO
ASSERT
ENABLE INTR
IOBUFFER
STATUS

237

238

Syntax Reference

CONVERT
Syntax
CONVERT IN st JA >
out buffer PAIRS ; string
variable
INDEX
OMUERTLIM] 00T } {interface select code | buffer}[{ i1 Fo | IMIIE ¥} 4 string variable]

Example Statements

20 CONVERT OUT 4 PAIRS ; AS
50 CONVERT IN 10 INDEX ; CS
110 CONVERT IN 7 ! Turn off conversion

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
buffer — the name of a string variable that has been declared as an IOBUFFER.
string variable — the name of a string variable in which the conversion table has been previously stored.

Actions Taken

Enables or disables a character conversion process for a specified interface or buffer and a specified direc-
tion. Although you can CON VERT using either an interface or a buffer, conversions can only be performed
with OUTPUT and ENTER statements. Conversions are not performed during SEND or TRANSFER.

If the optional parameters are not included (as in the 3rd example statement), a previously selected conver-
sion is turned off for the specified interface and direction.

If direction is specified as ‘‘IN’’, all bytes being input from the specified source are processed through a
conversion table immediately after they are received from the source. If direction is specified as *‘OUT’’, all
bytes being output to the specified destination are processed through a conversion table immediately before
they are sent to the destination. ‘‘IN”’ and ‘“‘OUT’’ conversions may both be specified for a given interface
select code or buffer.

Syntax Reference

If conversion method ‘‘PAIRS’’ is specified, the conversion table is treated as a sequential list of character
pairs, the second character in each pair being substituted for the first character. If the byte to be converted is
not found as one of the first characters in a pair, it is passed through unchanged. Recommended when only a
few characters need to be converted.

If the conversion method ‘‘INDEX"’ is specified, the numeric value of the byte to be converted is used as an
index into the conversion table. The byte found as a result of this indexed lookup is substituted for the
original byte. If the index value is greater than the length of the table, no conversion is performed. The first
character in the string corresponds to the index value of 0. Recommended when a large number of characters
need to be converted.

Related Statements

ENTER
IOBUFFER
OUTPUT

239

240 Syntax Reference

DTB$

Syntax

DTB$ (integer —»@—»

DTES integer

Example Statements

100 AS=DTBS (16+2*N)
200 PRINT DTBS$ (X1)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

DTBS is a function that returns the base 2 representation of an integer argument. The result is a 16-character
string and the argument is a numeric quantity.

Related Statements

BTD
DTHS$
DTO$
HTD
OTD

Syntax Reference 241

DTH$

Syntax

DTHS (integer —b-@—-»

DTH# Cinteger

Example Statements

110 B$S=DTHS (32+2"N)
210 PRINT DTHS (X2)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action Taken

DTHS is a function that returns the base 16 representation of an integer argument. The result is a 4-character
string and the argument is a numeric quantity.

Related Statements

BTD
DTBS$
DTO$
HTD
OTD

242 Syntax Reference

DTO$

Syntax

DTOS$ (integer —@—>

DT 0% Cinteger

Example Statements

120 C$=DTOS (64+2"N)
220 PRINT DTOS (X3)

Parameters

integer — a numeric expression that evaluates to an integer —32 768 thru 32 767.

Action taken

DTOS is a function that returns the base 8 representation of an integer argument. The result is a 6-character
string and the argument is a numeric quantity.

Related Statements

BTD
HTD
OTD
DTBS$
DTHS$

Syntax Reference 243

ENABLE INTR

Syntax

interface enable
ENABLE INTR seloct code —>@+ byte -

EHAELE ITHTE interface select code i enable byte

Example Statements

10 ENABLE INTR 7 ; 8 ! SRQ interrupt, HP-IB
50 IF S>2 AND S<11 THEN ENABLE INTR S ; X

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

enable byte — a numeric expression that evaluates to an integer O thru 255. Binary value of byte is used to
set and clear bits in the control register.

Action Taken

Enables the specified interface for interrupts according to the bits set in the enable byte. The enable byte is
placed in control register CR1. The meaning of each bit in CR1 is interface dependent; refer to the appro-
priate interface programming section or the interface register summary in this appendix for details. This
statement is identical to performing a CONTROL statement to Control Register 1.

Related Statements

CONTROL
ON INTR
STATUS

244 Syntax Reference

ENABLE KBD

Syntax

ENABLE KBD mask -

EMARLE FED mask

Example Statements

30 ENABLE KBD 33
180 IF X THEN ENABLE KBD K1

Parameters

mask — a numeric expression that evaluates to an integer 0 thru 255. Binary value of byte determines which
keyboard modes are enabled and disabled.

Action Taken

Bits in the mask byte correspond to various keyboard areas and program modes as shown in the following
table. If a bit is set in the mask, its feature is enabled. If a bit is clear, its feature is disabled. ‘

Bit | Mode Keys Affected

7 |RUN RESET

6 | RUN PAUSE

5 | RUN SFKs and KEYLABEL
4 | RUN All other keys

3 |INPUT RESET

2 | INPUT PAUSE

1 INPUT SFKs and KEYLABEL
0 | INPUT All other keys

Related Statements

INPUT
ON KEY #

Syntax Reference 245

‘ ENTER

Syntax
device
ENTER selector I -
buffer USING string
numeric
line variable
number

string
variable

=1 {device selector| buffer} [1.1% I F i {string| line number}][; [variable][, variable]...]

Example Statements

70 ENTER 701 USING AS ; X,Y,Z
90 ENTER C$; N(I),ZS$
120 ENTER 3 USING 30 ; AS
‘ 250 ENTER 100*S+A USING "#,B" ; N

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’).

buffer — the name of a string variable that has been declared as an IOBUFFER.

string — a string expression that contains a valid set of image specifiers.

line number — the line number of an IMAGE statement that contains a valid set of image specifiers.

variable (numeric or string) — the name of a variable intended as a destination of the ENTER operation.

Action Taken

Inputs bytes from the specified buffer or device; uses those bytes to build a number or string; places the result
into a BASIC variable. If a CONVERT is in effect, the conversion occurs immediately after the character is

taken from the interface or buffer.

246

Syntax Reference

When USING is not specified, free-field format is used. A free-field entry into a string places incoming bytes
into the variable until either a line-feed is received, a carriage-return/line-feed sequence is received, or the
string is full. Terminating sequences are not placed into the destination string. A free-field entry into a
numeric variable ignores up to 256 leading non-numeric characters. Blanks are ignored during number

building. Entry into a numeric variable is terminated by the first trailing character that is non-blank and
non-numeric.

When USING is specified, input operations are formatted according to the image specifers used. Image
specifiers may be enclosed in quotes and placed in the ENTER statement, contained in a string variable
named in the ENTER statement, or placed in an IMAGE statement referenced by the ENTER statement. For
detailed information on image specifiers, refer to the IMAGE statement in this appendix or see ‘‘Formatted
ENTER”’.

ENTER requires a line-feed character to satisfy the statement after the variable list has been satisfied. This
can be the same line-feed that satisfied the last variable in the list. If the source is a device selector and no
line-feed is detected, the computer will be “‘hung’’ on the ENTER statement. If the source is a buffer and no
line-feed is detected, a NO TERM error is generated. This requirement can be removed by using ‘‘#’’ as the
first image specifier. For more detailed information on statement terminators, see ‘‘Formatted ENTER”’. A
“‘hung’’ condition can be trapped by use of the SET TIMEOUT and ON TIMEOUT statements.

Related Statements

CONVERT
IMAGE
IOBUFFER

ON TIMEOUT
SET TIMEOUT
TRANSFER

Syntax Reference 247

ERROM

Syntax

Example Statements

30 X=ERROM
70 IF ERROM=192 THEN GOTO 100

Parameters

None

Action Taken

ERROM is a function that returns the ID number of the option ROM associated with the last error generated
by an option ROM. All option ROMs use error numbers greater than 100. The ID number of the I/O ROM is
192. Note that ERROM is modified only by the occurrence of another option ROM error.

Related Statements

ERRL
ERRN
ERRSC

248 Syntax Reference

ERRSC

Example Statements

40 Y=ERRSC
90 IF ERRSC=7 THEN GOSUB 200

Parameters

None

Action Taken

ERRSC is a function that returns the interface select code responsible for the most recent I/O error. Note that
ERRSC is not cleared by a system Reset and is modified only by the occurrence of another interface-
dependent I/O error. ‘

Related Statements

ERRL
ERRN
ERROM

Syntax Reference 249

HALT

Syntax

interface
_"GALT)’ select code [

HHL. T interface select code

Example Statements

100 HALT 7
200 HALT S1

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken
All interfaces: Stops current I/O operation. If an interface is HALTed with a TRANSFER active and an EOT
branch enabled, the branch will be taken.

HP-1B: Leaves bus in present state.

Serial, BCD, GPIO: Does not affect external lines, so STATUS can be used to inspect line states. RESET or
ABORTIO may be necessary after a halt to return handshake lines to the proper state for the next operation.

Related Statements

ABORTIO
ON EOT
RESET

2560 Syntax Reference

HTD

Syntax

HTD string —»@-»

HTLH string

Example Statements

20 Y=HTD (HS&LS)+A2
40 DISP HTD("F73A")

Parameters

string — a string expression that contains the base 16 representation of an integer. Limited to 4 significant
characters that must be “°0”’ thru *“9”” or ““‘A”’ thru “‘F”’,

Action Taken

HTD is a function that returns the value of a base 16 representation ‘contained in the string argument. The
argument is a character representation and the result is a numeric quantity.

Related Statements
BTD)
DTB$
DTH$
DTO$
OTD

IMAGE

Syntax

specifier |

ITMAGE specifier [- specifier]...

Example Statements

10 IMAGE "Total =",4D.DD
100 IMAGE #,%K,2X, #K

Summary of OUTPUT Image Specifiers

~ o *%:

NXSODIUIVZTXoMODO®>

Output one string character

Output number as one 8-bit byte

Output a comma separator in a number

Output one digit character; blank for leading zero
Output exponent information; five characters
Output exponent information; four characters
Output a variable in free-field format

Output number’s sign if negative, blank if positive
Output a period separator in a number

Output a European radix point (comma)

Output number’s sign, plus or minus

Output number as two 8-bit bytes (16-bit word)
Output one blank

Output one digit character, including leading zeros
Output a literal

Suppress end-of-line sequence at end of statement
Output one digit character; asterick for leading zero
Output an American radix point (decimal point)
Output an end-of-line sequence

Syntax Reference

281

252

Syntax Reference

Summary of ENTER Image Specifiers

H#NXSOEXomoO OO>

* R

~—

Demands one string character

Enter number as one 8-bit byte

Demand one character for a numeric field; allows
commas to be skipped over

Demand one character for a numeric field
Demand five characters for a numeric field
Demand four characters for a numeric field

Enter a variable in free-field format

Demand one character for a numeric field
Demand one character for a numeric field

Enter number as two 8-bit bytes (16-bit word)
Skip one character

Demand one character for a numeric field
Suppress requirement for a line-feed to terminate
statement or field

Allow EOI to terminate statement or field
Demand one character for a numeric field
Demand one character for a numeric fieid
Demand a line-feed :

Related Statements

CONVERT
ENTER ... USING
OUTPUT ... USING

Syntax Reference

IOBUFFER

Syntax

t
I0BUFFER | sting Lo
variable

TORLUFFER string variable

Example Statements

10 DIM As[88]
20 IOBUFFER AS

Parameters

string variable — the name of a string variable with a dimensioned length 8 characters longer than the
desired size of the buffer.

Actions Taken

Eight characters of the string variable are reserved for control of buffer activity.

Buffer empty pointer:
o Initial value = 1. Accessed by Control/Status registers CR0O, SRO. Characters are taken from the buffer
(by ENTER or TRANSFER) using the following sequence:
1. Read character
2. Increment empty pointer

Buffer fill pointer:
o Initial value = 0. Accessed by Control/Status registers CR1, SR1. Characters are put into the buffer (by
OUTPUT, TRANSFER, or string assignment) using the following sequence:
1. Increment fill pointer
2. Store character

Active-out select code:

o Initial value = 0. Accessed by Status register SR3. When active-out select code equals 0, there is no
output TRANSFER operation active for this buffer. When an output TRANSFER is active for this
buffer, the active-out select code is set equal to the interface select code that is the destination of the
TRANSFER.

253

254

Syntax Reference

Active-in select code:
o Initial value = 0. Accessed by Status register SR2. When active-in select code equals 0, there is no
input TRANSFER operation active for this buffer. When an input TRANSFER is active for this buffer,
the active-in select code is set equal to the interface select code that is the source of the TRANSFER.

Conversion pointers:
e These pointers cannot be accessed from BASIC. When a CONVERT statement to the IOBUFFER is
executed, pointers to the appropriate conversion tables are established. These pointers are initialized
by the IOBUFFER statement. Therefore, execute CONVERT after executing IOBUFFER.

Full buffer:
o A buffer is full when the fill pointer equals the dimensioned length of the string minus eight. Attempt-
ing to store data into a full buffer generates a BUFFER error.

Empty buffer:

o A buffer is empty when the empty pointer equals the fill pointer plus one. When the buffer becomes
empty, the fill pointer is reset to zero, and the empty pointer is reset to one. Active-out and active-in
select codes are not affected by the buffer becoming empty; neither are the conversion pointers
affected. Old data in the buffer is NOT lost, but the buffer fill pointer must be modified if you wish to
re-access the data in the buffer (so the buffer will ‘‘look’’ full).

Buffer Status Registers Buffer Control Registers
Empty pointer ' SRO Empty pointer CRoO
Fill pointer SR1 Fill pointer CR1
Active in select code SR2
Active out select code SR3

Related Statements

CONTROL
CONVERT
ENTER
OUTPUT
STATUS
TRANSFER

Syntax Reference 255

LOCAL

Syntax

| device | |

selector

—><I—.:)CAL

L. AL, device selector [+ device selector]...

Example Statements

220 LOCAL 7
330 LOCAL 100*S+Dl @ RESUME 7

Parameters

device selector — a valid interface select code or a valid combination of interface select code and prlmary
address (see ‘‘Choosing the Source or Destination’’). If multiple device selectors are spemfled they
must all be on the same interface select code. :

Actions Taken

HP-1B: o S

e If device selector is only an interface select code, Remote Enable (REN) is set false. Must be System

Controller. o o .

e If device selector contains a primary address, interface addresses spe<:1f1ed dev1ce(s) and sends Go To”

Local (GTL) message. Leaves ATN true; use RESUME if you wish to set ATN false. Must be Active
Controller.

o If device is in REMOTE with LOCAL LOCKOUT set, the device must receive the GTL message to be

returned to local (front panel) control.

Serial, BCD, GPIO: Error

Related Statements

LOCAL LOCKOUT
REMOTE
RESUME

266 Syntax Reference

LOCAL LOCKOUT

Syntax

interface .
LOCAL LOCKOUT select code

LOCFAL LOCEOUT interface select code

Example Statements

50 LOCAL LOCKOUT SO @ RESUME SO
100 REMOTE 706,712 @ LOCAL LOCKOUT 7

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Action Taken

HP-IB:
e Must be Active Controller. Sends Local Lockout (LLO) command. Leaves ATN true; use RESUME if
you wish to set ATN false. .

Serial, BCD, GPIO: Error

Related Statements

LOCAL
REMOTE

Syntax Reference 2567

OFF EOT

Syntax

interface
_QFEOT select code{ ™™

CFF EGT interface select code

Example Statements

40 OFF EOT 3
120 IF S>128 THEN OFF EOT Sl

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Action Taken

Disables end-of-line branching for termination of a TRANSFER on the specified interface. OFF EOT does
NOT cancel a branch permanently. For example, if the TRANSFER has terminated and an ON EOT
statement is re-executed, the branch will be taken at that time.

Related Statements

OFF INTR
OFF TIMEOUT
ON EOT

ON INTR

ON TIMEOUT

258 Syntax Reference

OFF INTR

Syntax

interface ;
(OFF INTR) select code

D ITHTHR interface select code

Example Statements

110 OFF INTR 7
180 IF X THEN OFF INTR S2

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Action taken

Disables end-of-line branching for interrupts from the specified interface. OFF INTR does NOT cancel a

branch permanently. For example, if the interface has interrupted and an ON INTR statement is re-executed,
the branch will be taken at that time. .

Related Statements

CONTROL
ENABLE INTR
OFF EOT

OFF TIMEOUT
ON EOT

ON INTR

ON TIMEOUT

Syntax Reference 259

OFF TIMEOUT

Syntax

interface
_>@;:T|ME°UT) »select code [

Example Statements

50 OFF TIMEOUT S DIV 100
120 OFF TIMEOUT 7

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Action Taken

Disables end-of-line branching for occurrence of a timeout on the specified interface. OFF TIMEOUT does
NOT cancel a branch permanently. For example, if the interface has timed out and an ON TIMEOUT
statement is re-executed, the branch will be taken at that time.

Related Statements

OFF EOT

OFF INTR

ON EOT

ON INTR

ON TIMEOUT
SET TIMEOUT

260 Syntax Reference

ON EOT

Syntax
| interface ‘ line 3
ON EOT select code number

L EOT interface select code {101 11| #1015 115} line number

Example Statements

20 ON EOT 7 GOTO 150
120 ON EOT S4 GOSUB 1000

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
line number — an integer constant from 1 thru 9999 that specifies a valid line number within the program.

Actions Taken ’

Enables end-of-line branches to the specified line number when a TRANSFER to or from the specified
interface is terminated. A pending end-of-line branch from a previous, unserviced TRANSFER termination
(for the specified interface select code) is taken immediately. Only one TRANSFER termination per interface
select code is retained by the system.

Each interface may have alternate causes for TRANSFER terminations that are user-programmable. Refer to
the appropriate Interface Programming section for details about this capability.

Overrides any previous ON EOT statement for the same interface select code.

Related Statements

CONTROL
OFF EOT
OFF INTR
OFF TIMEOUT
ON INTR
ON TIMEOUT
STATUS
TRANSFER
Also see Branch Precedence Table

Syntax Reference

ON INTR

Syntax

interface line
—P-{ ON INTR ’—’select codel GOTO T number =

I HTH interface select code {5411 (1| &

LIE} line number

Example Statements

30 ON INTR S1 GOSUB 2000
60 ON INTR 3 GOTO 185

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
line number — an integer constant from 1 thru 9999 that specifies a valid line number within the program.

Actions Taken

Enables end-of-line branches to the specified line number when an interface interrupt occurs (see ENABLE
INTR). A pending end-of-line branch from a previous, unserviced interface interrupt (for the specified
interface select code) is taken immediately. Only one interrupt per interface select code is retained by the
system.

Interrupt causes are specified by either ENABLE INTR or CONTROL statements. Interrupt causes are
interface-dependent; refer to the appropriate Interface Programming Section for details.

Overrides any previous ON INTR statement for the same interface select code.

Related Statements

CONTROL
ENABLE INTR
OFF EOT

OFF INTR

OFF TIMEOUT
ON EOT

ON TIMEOUT

Also see Branch Precedence Table

261

262

Syntax Reference

ON TIMEOUT

Syntax
interface line
—{ ON TIMEOUT seloct code —[{GOTO}-}-» e

Cib T IMEDLT interface select code {5117 11| 11%11E] line number

Example Statements

20 ON TIMEOUT S3 GOSUB 2500
50 ON TIMEOUT 7 GOTO 320

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
line number — an integer constant from 1 thru 9999 that specifies a valid line number within the program.

Actions Taken

Enables end-of-line branches to the specified line number when an interface timeout occurs (see SET
TIMEOUT). A pending end-of-line branch from a previous, unserviced interface timeout (for the specified
interface select code) is taken immediately. Only one timeout per interface select code is retained by the
system.

End-of-line branching for TIMEOUT is not applicable to the actual data movement portion of a TRANSFER
(INTR or FHS) operation. A TRANSFER can timeout if the interface or device cannot be addressed to start
the TRANSFER, but there will be no ON TIMEOUT branch if the peripheral device stops handshaking in the
middie of the TRANSFER.

Overrides any previous ON TIMEOUT statement for the same interface select code.

Related Statements

OFF EOT
OFF INTR
OFF TIMEOUT
ON EOT
ON INTR
SET TIMEOUT
Also see Branch Precedence Table

Syntax Reference 263

oTD
Syntax
~ GO~ O

[T string

Example Statements

80 X=OTD (H$&LS)+A3
110 DISP OTD("177345")

Parameters

string — a string expression that contains the base 8 representation of an integer. Limited to 6 significant
characters that must be ‘“0”’ thru **7’’ (except most significant character must be ‘0’ or *‘1°").

Action Taken

OTD is a function that returns the value of a base 8 representation contained in the string argument. The
argument is a character representation and the result is a numeric quantity.

Related Statements

DTB$
DTHS
DTO$
BTD
HTD

264 Syntax Reference

OUTPUT

Syntax

device

selector I 1‘
buffer USING -l string
. line
number
R Y o] Numeric
’ I “ | expression I

string
expression

OUTPUT

LILITFLIT {device selector [, device selector ...]| buffer} [L1% I M {string| line number}]
[: expression[, expression][; expression]...]

Example Statements

70 OUTPUT 701 USING AS ; X,Y,Z

90 OUTPUT CS ; N(I);ZS$

120 OUTPUT 3 USING 30 ; AS

250 OUTPUT 100*S+A USING "#,B" ; N

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’). If multiple device selectors are specified, they
must all be on the same interface select code. OUTPUT allows device selectors 1 and 2 for addressing
the internal CRT and printer.

buffer — the name of a string variable that has been declared as an IOBUFFER.

string — a string expression that contains a valid set of image specifiers.

line number — the line number of an IMAGE statement that contains a valid set of image specifiers.

expression (string or numeric) — any string expression or numeric expression intended to be QUTPUT.
Expressions may be constants or variables and may be separated by commas or semicolons.

Syntax Reference

Actions Taken

Outputs bytes to the specified buffer or device(s); bytes may be string or numeric. If a CONVERT operation
is specified, the conversion is performed immediately before the byte is sent to the interface or buffer.

When USING is not specified, and output items are separated by commas, free-field format is used. A
free-field output of a string item causes it to be left-justified in a field with no more than 20 trailing blanks. A
free-field output of a numeric item causes it to be left-justified in a field of 11, 21, or 32 characters.

When USING is not specified, and output items are separated by semicolons, compact format is used. A
compact output of a string variable causes it to be sent with no leading or trailing blanks. A compact output of
a numeric variable causes it to be sent with one trailing blank and one leading sign character (blank if
positive, minus sign if negative).

When USING is specified, output operations are formatted according to the image specifers used. Image
specifieré may be enclosed in quotes and placed in the OUTPUT statement, contained in a string variable
named in the OUTPUT statement, or placed in an IMAGE statement referenced by the OUTPUT statement.
For detailed information on image specifiers, refer to the IMAGE statement in this appendix or see ‘‘Format-
ted OUTPUT".

OUTPUT sends an end-of-line sequence after the last item in the OUTPUT list. This sequence is interface-
dependent; can be changed by the CONTROL statement; and defaults to carriage-return/line-feed. This
sequence can be suppressed by using ‘‘#°’ as the first image specifier. For more detailed information on
statement terminators, see ‘‘Formatted OUTPUT’’. If the OUTPUT is to a buffer, a carriage-return/line-feed
is placed in the buffer after the last data byte unless the *‘#’’ image is used.

Related Statements

CONTROL
CONVERT
IMAGE
IOBUFFER
TRANSFER

265

266 Syntax Reference

IQASSSCCHVTRCH.

Syntax

: (g - | device
- ‘V,PASSCON'TROL selector ’—b \

FTE

FH LM TR device selector

Example Statements

100 PASS CONTROL 100*S+D
_ 250 PASS CONTROL 721 @ ENABLE INTR 7;32

Pa rameters. |

device selector — a valid interface seléct code or a valid combination of interface select code and prlmary
address (see ‘‘Choosing the Source or Destination’’).

Actlons Taken

HP IB

o Mltst be Active Controller. Passes Active Controller responsibility to the specified device. This clears ’
the CA bit (bit 5 of SRS5) when control is passed out of the interface.

e If device selector is only an interface select code, interface sends the Take Control (TCT) message,
then sets ATN false. Be sure that the device receiving control has been addressed to talk before using
this form of PASS CONTROL.

e If device selector contains a primary address, interface sends the specified device’s talk address, sends
the TCT message, then sets ATN false.

Serial, BCD, GPIO: Error

Related Statements

ABORTIO
ENABLE INTR
ON INTR
REQUEST
RESET

Syntax Reference 267

PPOLL

Syntax

PPOLL - interface
—PGO) () select code)

F 1. 1. ¥ interface select code

Example Statements

310 X=PPOLL(7)
620 P9=PPOLL (S0)

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

HP-IB:
e Must be Active Controller. PPOLL is a function that returns the results of a Parallel Poll operation.
Sends Identify (IDY) message. Devices capable of responding each assert one bit of the parallel poll
response byte.

Serial, BCD, GPIO: Error

Related Statements
SPOLL

268 Syntax Reference

REMOTE

Syntax

device
selector

REMOTE

FEEMOTE device selector [device selector]...

Example Statements

50 REMOTE 720
130 REMOTE 100*S+D @ RESUME S

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’). If multiple device selectors are specified, they
must all be on the same interface select code.

Actions Taken

HP-IB: Must be System Controller. Puts the bus into remote operation.
e If device selector is only an interface select code, interface sets Remote Enable (REN) true. Devices do
not go into remote state until they are addressed to listen.

o If device selector contains a primary address, interface sets REN true, sends Unlisten (UNL) message,
then sends the listen address of the specified device(s). REMOTE leaves ATN true; use RESUME if
you wish to set ATN false.

Serial: Error
BCD: Sets partial field separator. Refer to ‘‘Using the BCD Interface’’ for details.

GPIO: Error

Related Statements

LOCAL
LOCAL LOCKOUT
RESUME

Syntax Reference 269

REQUEST

Syntax
—) »| interface | () > response >
’@QUEST select code byte

CREGLEST interface select code : response byte

Example Statements

50 REQUEST 7 ; 64+4
260 IF T>40 THEN REQUEST S ; 64+X

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
response byte — a numeric expression that evaluates to an integer 0 thru 255.

Actions Taken

HP-IB: Must be non-controller. Sets up a Serial Poll response byte. Sets Service Request (SRQ) true if bit 6
(decimal value 64) of the response byte is set. The response byte is sent to the Active Controller in response
to an incoming Serial Poll operation. The Active Controller’s Serial Poll operation clears SRQ, which can
also be cleared by executing REQUEST with bit 6 of the response byte equal to zero.

Serial: Sends a BREAK. The BREAK is defined by the response byte. A space (0-state) condition is held for
the number of character times specified in the response byte. It is then followed by a mark (1-state) condition
for five character times.

BCD, GPIO: Error

Related Statements

PASS CONTROL
SPOLL

270

Syntax Reference

RESET

Syntax

interface
RESET select code

- T interface select code

Example Statements

30 RESET 7
300 IF S$>128 THEN RESET S3

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

All interfaces: Performs a hardware reset of the interface, returning it unconditionally to its power-on state.
The interface performs a self test (failure causes ERROR 110), and the control registers are set according to
the configuration switches on the interface circuit assembly. RESETing an interface with a TRANSFER
active and EOT branching enabled causes the branch to be taken.

HP-IB: If System Controiler, sends Interface Clear (IFC), then Remote Enable (REN).
Serial: Modem control lines are turned off.

BCD: Data lines are set to high-impedance state, handshake lines are set false, and I/O lines are set to input
state.

GPIO: Ports A and B are set to high-impedance state, Ports C and D are set to off state, CTL lines are set
false, and OUTA and OUTB are set to indicate output.

Related Statements

ABORTIO
HALT
ON EOT

Syntax Reference 271

RESUME

Syntax

interface >
(RESUME) select code|

SLIME interface select code

Example Statements

110 RESUME 7
190 RESUME S DIV 100

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.

Actions Taken

HP-1B: Must be Active Controller (CA=1). Sets the Attention (ATN) line false. Statements that can leave
the ATN line true are: CLEAR, LOCAL, LOCAL LOCKOUT, REMOTE, SEND, TRIGGER.

Serial: The transmitter is enabled. Refer to ‘‘Using the Serial Interface’’ for details.

BCD, GPIO: Error

Related Statements

CONTROL
HALT
SEND

272

Syntax Reference

SEND

Syntax

interface
select code

7

CMD

1

DATA

H

Y

numeric

expression

string

expression

numeric \

expression

string
expression

TALK

LISTEN

MLA

MTA

Rk

B0

Y

H

N

T

primary

EOL

address

primary
address

secondary
address

Y

1

o

Y

./

/

\S

Y

Syntax Reference 273

wh M 1tinterface select code y [[list] [1HF T # List [£ (1
[L. 1% TEM primary address[, primary address] ...][+

(LHLI LTI AT T]]

LIILT L K primary address]
li secondary address [, secondary address] ...]

Example Statements

100 SEND 7 ; CMD "U?%" DATA "Hello"
200 SEND 7 ; CMD AS$ SCG 14,18 DATA X$
300 SEND S ; MTA UNL LISTEN 6,14 CMD P,R SCG 6

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
list — a list of numeric or string expressions, separated by commas.

primary address — a numeric expression that evaluates to an integer O thru 31.
secondary address — a numeric expression that evaluates to an integer O thru 31.

Actions Taken

HP-IB: If sending any commands (CMD, TALK, LISTEN, SCG, UNL, UNT, MLA, MTA) must be Active
Controller. The ATN line is set true while sending commands. The ATN line is set false while sending
DATA, even if no actual data is sent (i.e. DATA " ").

e CMD: Commands: send list of 8-bit expressions with ATN true. Primary commands have a bit pattern
= X00CCCCC, where X=don’t care, C=bits of command (decimal 0 thru 31). SEND CMD can be
used to create odd parity on commands, if necessary.

e DATA: Send list of numeric or string expressions with ATN false. Any 8-bit pattern may be sent. If
EOL is specified, the interface’s end-of-line character sequence is sent following data (Control regis-
ters 17 thru 23).

o TALK: Send device’s Talk Address (TAD). Bit pattern = X10TTTTT, where X=don’t care, T=Dbits of
talk address (decimal O thru 31).

e LISTEN: Send device’s Listen Address (LAD). Bit pattern = X01LLLLL, where X=don’t care,
L=bits of listen address (decimal O thru 31).

o SCG: Secondary Command Group: Send secondary address to device. Bit pattern = X11SSSSS, where

X=don’t care, S=bits of secondary address (decimal 0 thru 31).

UNL: Send Unlisten command (UNL). Numeric value sent is 63; ATN is true.

UNT: Send Untalk command (UNT). Numeric value sent is 95; ATN is true.

MLA: Send My Listen Address (MLA). This is the listen address of the interface. Factory setting = 53.
MTA: Send My Talk Address (MTA). This is the talk address of the interface. Factory setting = 85.

274 Syntax Reference

Serial: Only form that can be sent is DATA. '
¢ DATA: Sends list of numeric or string expressions. If EOL is specified, the interface’s end-of-line ‘
character sequence is sent (control registers 17 thru 23).

BCD: See ‘“Using the BCD Interface”’ details.
e CMD: Primary addresses O thru 6 set partial field specifier.

e DATA: Lower 4 bits of data bytes are sent; control characters, spaces, and commas are ignored. If EOL
is specified, data format checking is enabled.

e LISTEN, TALK: Primary addresses O thru 6 set partial field specifier.
e SCG: Error
e UNL, UNT, MLA, MTA: Ignored

GPIO: See ‘‘Using the GPIO Interface’’ details.

e CMD: Primary addresses O thru 15 select port configuration. Device Clear command pulses RESA and
RESB. Selected Device Clear pulses RESA or RESB according to the most recent primary address.

o DATA: Send list of numeric or string expressions. Data is sent as 8-bit bytes. If EOL is specified, the
interface’s end-of-line character sequence is sent (control registers 17 thru 23).

e LISTEN, TALK: Primary addresses O thru 15 select port configuration.
e SCG: Error
e UNL, UNT, MLA, MTA: Ignored

Related Statements
OUTPUT

Syntax Reference 275

SET TIMEOUT

Syntax

interface -
—P@T TIMEOUT }—3 select code —>@—>~mn|hseconds

SET TIMEDQIT interface select code .+ milliseconds

Example Statements

100 SET TIMEOUT SO0 ; X*1000
280 ON TIMEOUT 7 GOTO 550 @ SET TIMEOUT 7 ; 4500

Parameters

interface select code — a numeric expression that evaluates to an integer 3 thru 10.
milliseconds — a numeric expression that evaluates to an integer 0 thru 32 767.

Action Taken

Establishes an approximate time limit (in milliseconds) that the interface will wait to complete a handshake
with its peripheral device. If the specified time limit is exceeded and ON TIMEOUT end-of-line branching is
enabled, the branch is taken. If no ON TIMEOUT is"currently in effect, there is no indication that a timeout
has occurred until an ON TIMEOUT is subsequently executed.

Related Statements

OFF TIMEOUT
ON TIMEOUT

276 Syntax Reference

SPOLL

Syntax

SPOLL device)
selector

SF L. £ device selector

Example Statements

50 P=SPOLL (S4)
250 IF SPOLL(701)>63 THEN GOTO 750

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’).

Actions Taken

HP-IB:

e Conducts a Serial Poll of a device on the bus and returns the device’s status byte. If bit 6 of the status
byte is set (decimal value 64), it indicates that the device is requesting service (asserting SRQ).

o If device selector is only an interface select code, interface sends Serial Poll Enable (SPE), sets ATN
false, receives the status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

e If device selector contains a primary address, interface sends Unlisten (UNL), My Listen Address
(MLA), devices Talk Address (TAD), Serial Poll Enable (SPE), then sets ATN false. It receives the
status byte, sends Serial Poll Disable (SPD), then sends Untalk (UNT).

Serial, BCD, GPIO: Error

Related Statements
PPOLL

Syntax Reference 277

' STATUS

Syntax

numeric
variable

- interface register
—P@TUS select code j\ ’ number

buffer

S THTLIE {interface select code| buffer} , register number 3 numeric variable [» numeric variable] ...

Example Statements

20 STATUS 7,0 ; C0,Cl,C2,C3,C4
70 STATUS S1,5 ; X

Parameters
‘ interface select code — a numeric expression that evaluates to an integer 3 thru 10.
buffer — the name of a string variable that has been declared as an IOBUFFER.

register number — a numeric expression that evaluates to an integer O thru 15. Must specify a valid status
register for the selected interface.

numeric variable — any numeric variable intended as a destination for the status information.

Actions Taken

Reads one or more status register(s) and assigns the value(s) to the specified variable(s). When more than one
variable is specified, consecutive status registers are read, starting at the specified register number. Status

values returned are integers 0 thru 255.

Related Statements

ASSERT
CONTROL
ENABLE INTR
IOBUFFER

278

Syntax Reference

TRANSFER (out)
Syntax

-

device
—FGRANSFED—D buffer @ selector INTR

FHS

= I buffer T11 device selector [, device selector [, device selector...]]{ I HTF | FH)

Example Statements

150 TRANSFER BS$ TO 721 INTR
280 OUTPUT BS$S USING "#,K" ; DS @ TRANSFER BS TO 9 FHS
400 ON EOT S1 GOSUB 660 @ TRANSFER X$ TO S1 INTR

Parameters

buffer — the name of a string variable that has been declared as an IOBUFFER.

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘‘Choosing the Source or Destination’’). If multiple device selectors are specified, they
must all be on the same interface select code.

Actions Taken

Takes data bytes from the specified buffer and sends them to the specified device(s). Data is taken from the
buffer according to the buffer empty pointer. If the device selector contains a primary address, addressing is
performed prior to sending the first byte. The interface’s programmable end-of-line sequence is sent after the
last byte from the buffer has been sent. Note that the buffer may contain an additional carriage-return/line-
feed placed there by an OUTPUT statement. The TRANSFER terminates when the buffer is empty. If ON
EOT branching is enabled, the branch is taken when the TRANSFER terminates.

If INTR (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each time it
is ready for a new character. The TRANSFER continues to completion even though program execution may
have stopped. A WARNING 101 is issued if the program stops with a TRANSFER still active. Be certain that
the TRANSFER has terminated (use STATUS, RESET, HALT, or ABORTIO) before attempting to modify
the program. This TRANSFER type (under ideal conditions) is capable of a maximum data transfer rate of
about 400 bytes per second.

Syntax Reference

If FHS (Fast Handshake) is specified, the interface and computer are dedicated to the TRANSFER until it is
complete. No interrupts or keypresses (not even the RESET key) are detected until the TRANSFER termi-
nates. If the computer ‘‘locks up’’ on a FHS TRANSFER, only a power-on or special interface-specific
termination (i.e. Interface Clear on HP-IB) can return the computer to its ‘‘normal’’ state. This TRANSFER
type (under ideal conditions) is capable of data transfer rates in excess of 20 000 bytes per second.

Related Statements

ABORTIO
CONTROL
HALT
IOBUFFER
ON EOT
OUTPUT
RESET
STATUS

279

280 Syntax Reference

TRANSFER (in)

Syntax

device
——H TRANSFER }—)— selector

-— buffer

(

I

byte W L
byte
count

~ FHS >
- byte
0 COUNT - count

TEFM=FER device selector T4 buffer I HTE[3 [T byte count] [11E L. 11 byte] [E 1 1]

or

Example Statements

100 TRANSFER 706 TO BS INTR

200 TRANSFER 100*S+D
300 TRANSFER 3 TO AS

TO B$ INTR ;
FHS ; COUNT

21 device selector T {1 buffer FH& [[T byte count] [F111]]

COUNT 80 DELIM 10 EOI

16

Syntax Reference

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see ‘*Choosing the Source or Destination’’).

buffe,i' — the name of a string variable that has been declared as an IOBUFFER.

byte count — a numeric expression that evaluates to an integer 0 thru 32 767. Specifies maximum number of
bytes to be input.

byte — a numeric expression that evaluates to an integer 0 thru 255. Specifies the ASCII value of a character
which can terminate the transfer.

Actions Taken

Takes data bytes from the specified device and places them into the specified buffer. Characters are placed
into the buffer according to the buffer fill pointer. The TRANSFER terminates when the buffer is full or
when the first one of the specified terminating conditions is met. The interface may also have a programma-
ble terminating condition; refer to the appropriate Interface Programming section for details. Specifying
COUNT sets a maximum limit on the number of characters to be TRANSFERed. DELIM specifies the
numeric value of a character that can terminate the transfer. Specifying EOI allows the TRANSFER to
terminate when an interface-dependent ‘‘END”’ signal is detected (such as the EOI line on HP-IB). The
terminating condition for buffer full is always in effect. If an ON EOT branch is enabled, the branch is taken
when the TRANSFER terminates.

If INTR (Interrupt) is specified, the interface is automatically enabled to interrupt the computer each time it
is ready with a new character. The TRANSFER continues to completion even though program execution may
have stopped. A WARNING 101 is issued if the program stops with a TRANSFER still active. Be certain that
the TRANSFER has terminated (use RESET, HALT, or ABORTIO) before attempting to modify the pro-
gram. This TRANSFER type (under ideal conditions) is capable of a maximum data transfer rate of about 400
bytes per second.

If FHS (Fast Handshake) is specified, the interface and computer are dedicated to the TRANSFER until it is
complete. No interrupts or keypresses (not even the RESET key) are detected until the TRANSFER termi-
nates. If the computer “‘locks up’’ on a FHS TRANSFER, only a power-on or special interface-specific
termination (i.e. Interface Clear on HP-IB) can return the computer to its ‘‘normal’’ state. This TRANSFER
type (under ideal conditions) is capable of data transfer rates in excess of 20 000 bytes per second.

Related Statements

ABORTIO
CONTROL
ENTER
HALT
IOBUFFER
ON EOT
RESET
STATUS

281

282 Syntax Reference

TRIGGER
Syntax

device

TRIGGER | selector

- device selector [+ device selector]. ..

Example Statements

70 TRIGGER 706,715 @ RESUME 7
190 TRIGGER S1

Parameters

device selector — a valid interface select code or a valid combination of interface select code and primary
address (see *‘Choosing the Source or Destination’’). If multiple devices are selected, they must all be
on the same interface select code.

Actions Taken

HP-IB:

e Must be Active Controller. Sends the Group Execute Trigger command (GET).

e If device selector is only an interface select code, interface sends the GET command and leaves ATN
true; use RESUME if you wish to set ATN false. Those devices already addressed to listen receive the
GET command.

e If device selector contains a primary address, interface sends Unlisten (UNL), then the Listen Address
(LAD) of the specified device(s). Sends the GET command and leaves ATN true; use RESUME if you
wish to set ATN false.

Serial, BCD, GPIO: Error

Related Statements

RESUME
SEND

HP-IB Interface Registers

Most Significant Bit

Interface Register Maps

Status Register 0 - Interface ID

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
0 0 0 0 0 0 0 1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1
Control Register 0 - Parity Control
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable Enable
Not Used ODD EVEN ONE ZERO
Parity Parity Parity Parity
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
Status/Control Register 1 - Interrupt Cause/Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IFC LA CA TA SRQ DCL or SDC GET SCG
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt
Value = 128| Value =64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1

283

284

Interface Registers

Most Significant Bit

Status/Control Register 2 - Control Lines

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used REN SRQ ATN EOI DAV NDAC NRFD
Value = 128/ Value = 64 | Value =32 | Value = 16 | Value=8 | Value = 4 Value=2 | Value =1
Status/Control Register 3 - Data Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1

Status Register 4 - Primary Address and System Controller

Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System .
Not Used Controller Primary Address (HP-IB Address)
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1
Status Register 5 - Interface State
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Listener Controller Talker Serial Poll Pafity Remote Local
Controller Active Active Active Enable Error Enable Lockout
Value = 128 Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Status Register 6 - Secondary Command
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Secondary A:c)ldress (Secondary Command)
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Most Significant Bit

Control Register 16 - EOL Control

Interface Registers 285

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Number of Characters
EOI Not Used in EOL Sequence
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value =1

Control Register 17 thru Control Register 23 - EOL Characters .

Serial Interface Registers

Most Significant Bit

Status Register 0 - Interface ID

Least Significant Bit

Bit 7 Bit 6 Bit'5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 1 0
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
Status/Control Register 1 - Interrupt Cause/Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
DCD DSR CTS
Break Framing Parity Reg:;\éed (Opt. 001) Auto- (Opt. 001) | (Opt. 001)
Received Error Error Available RTS disconnect DRS DTR
(Standard) (Standard) | Standard)
]
Value = 128| Value = 64 | Value = 32 | Vdlue =16 | Value =8 | Value=4 | Value =2 | Value = 1
Status/Control Register 2 - Modem Control
Most Significant Bit . Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
DRS RTS DTR
(Opt. 001) | (Opt. 001) | (Opt. 001)
Not Used
DSR. DCD CTS
(Standard) | (Standard) | (Standard)
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

286 Interface Registers

Status Register 3 - Modem Signals and Cable Type ‘
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DCD Cable DSR CTS

(Opt. 001) Type (Opt. 001) | (Opt. 001)
Not Used
RTS |0= Opt. 001 DRS DTR
(Standard) | 1 =Std. |(Standard) | (Standard)

Value = 128/ Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Control Register 3 - Standard Baud Rates

Value | Rate Specified Value | Rate Specified
0 50 ‘ 8 1200
1 75 9 1800
2 110 10 2000
3 134.5 11 2400
4 150 12 2600
5 200 13 4800
6 300 14 7200
7 600 15 9600
Status/Control Register 4 - Character Format
Most Significant Bit ‘ Least Significant Bit ‘
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set Force Odd/Even Enable Stop
Not Used Break Parity Parity Parity Bits Character Length
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Parity Specifier
None | Odd | Even 1 0
8 24 40 56
9 | 25 41 57

10 26 42 58
11 27 43 59

Bits/Character

o ~N® O
®wN 2o

The table above assumes one stop bit. For two stop bits, add 4 to the value shown.

Most Significant Bit

Status/Control Register 5 - Modem Features

Interface Registers 287

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Autg—c;is::on. Autci)f-?]ig;:on. Autci;-t:igfon.
Not Us i i ’
UC | mioneva | vantumate | 0D (001 | N1 U589 psaoor) | o1 ooy
RTS (Std.) DRS (Std.) | DTR (Std.)
Value = 128| Value =64 | Value =32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value = 1

Status/Control Register 6 - Least Significant Byte of Baud Rate Divisor

Status/Control Register 7 - Most Significant Byte of Baud Rate Divisor

Status/Control Register 8 - Parity and Framing Error Replacement Character

Status/Control Register 9 - Transmitter and Recelver Control

Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Strip Strip Change Set Bit 7 Reset X
Trggarzliteter Received Received | Character jof Character| Receive Alét:aifgo Rigiti)J/:r
S Rubouts Nulls if Error if Error Queue)
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value =4 Vélue’z 2 | Value=1

Status Register 10 - Transmitter and Recelver Status

Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bita | Bit2 Bit 1 Bit 0
Transmit . . Received
Not Used | Not Used | Register ReB(;:if/'; g Fré"r':‘c')’r‘g F;:gf Not Used | Data
Empty 2 Available
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Status Registef 11 - 1/O Termination Cause
Most Significant Bit) Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
End of End of Transfer CR15 CR14 CR13 CR12 DELIM
Output Input Count Character | Character | Character | Character | Character
Data List Data List Expired Received | Received | Received | Received | Received
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

288 Interface Registers

Control Register 11 - Input Termination Control

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Disable
XON XOFF
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Control Register 12 - Input Termination Character
Control Register 13 - Input Termination Character
Control Register 14 - Input Termination and XOFF Character
Control Register 15 - Input Termination and XON Character

Control Register 16 - EOL Control

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit2 Bit 1 Bit 0
Auto EOL
RTS Transmit Number of characters in EOL sequence

Enable Disable
Value = 128 Value = 64 | Value =32 |Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Control Register 17 thru Control Register 23 - EOL Characters

BCD Interface Registers

Status Register 0 - Interface ID

Most Significant Bit Least Significant Bit
Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 1 1

Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Interface Registers 289

Status/Control Register 1 - Interrupt Cause/Enable

Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0
Function B Function A
(Most Significant Digit) (Most Significant Digit)
Value = 128| Value = 64 | Value =32 | Value = 16 | Value=8 | Value =4 | Value = 2 Value = 1

Most Significant Bit

Status Register 2 - Line Status

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
I/OA /OB CTLA CTLB FLGA FLGB
0= Input 0=Input | 0= Ready | 0=Ready | 0= Ready | 0= Ready" 0 0
1=COutput | 1 =Output | 1 =Busy 1 = Busy 1 = Busy 1 = Busy
Value = 128{ Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1
Control Register 2 - Line Assertion and Port 10
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Port 10 Output
I/OA /0B CTLA CTLB (when available)
Value = 128(Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
Status/Control Register 3 - Mantissa Digits
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Digits Number of Digits
Assigned for Channel B Assigned for Channel A
Mantissa (0— 11) Mantissa (0~ 11)
Value = 128| Value = 64 | Value =32 |Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Most Significant Bit

Status/Control Register 4 - Exponent Digits

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Number of Digits Number of Digits
Assigned for Channel B Assigned for Channel A
Exponent (80— 3) Exponent (0— 3)
Value = 128(Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

290 Interface Registers

Status/Control Register 5 - Function Digits

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Number of Digits Number of Digits

Assigned for Channe! B Assigned for Channel A
Function (0— 11) Function (90— 11)
Value = 128| Value = 64 | Value =32 | Value=16 | Value =8 | Value=4 | Value=2 | Value = 1

Status/Control Register 6 - Decimal Point Placement

Most Significant Bit

Least Significant Bit
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
Number of Mantissa Number of Mantissa
Digits Assigned to the Digits Assigned to the
Right of the Decimal Point. Right of the Decimal Point
(Channel B) (Channel A)
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Status/Control Register 7 - Handshake Normalization

Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Channel A | Channel B
Invert Invert Invert Invert Invert Invert Handshake | Handshake
I/1OA /0B CTLA CTLB FLGA FLGB 0= Trailing |0 = Trailing
1 = Leading |1 = Leading
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1
Status/Control Register 8 - Data Normalization
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Invert Channel B Data Invert Channel A Data
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Interface Registers 291

Status/Control Register 9 - Function Normalization

Most Significant Bit Least Significant Bit

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Invert Channel B Function Bits Invert Channel A Function Bits

Value = 128| Value = 64 | Value =32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value = 1

Status/Control Register 10 - Sign Bit and Port 10 Normalization

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Invert Invert Invert Invert
Exponent B | Mantissa B | Exponent A | Mantissa A Invert Port 10 Data

Sign Bit Sign Bit Sign Bit Sign Bit

Value = 128| Value = 64 | Value =32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

GPIO Interface Registers

Status Register 0 - Interface 1D

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Value = 128| Value = 64 | Value = 32 | Value=16 | Value=8 | Value=4 | Value=2 | Value=1

Control Register 0 - Parity Control

Most Significant Bit Least Significant Bit
Bit 7 Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
Enable Enable Enable Enable
Not Used OoDD EVEN ONE ZERO
Parity Parity Parity Parity
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value=1

292

Interface Registers

Most Significant Bit

Status/Control Register 1 - Interrupt Cause/Enable

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ST1 STO FLGB FLGA Not Parity Error Not
Interrupt Interrupt Interrupt Interrupt Used Interrupt Used
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value = 1
Status Register 2 - Line Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @
ST STO FLGB FLGA CTL1 CTLB CTLO CTLA
Value = 128/ Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value = 2 Value =1
Control Register 2 - Line Assertion
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RESB RESA Not Used CTLA CTLB CTLO CTLA
Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Status/Control Register 3 - Handshake Line Normalization

Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Invert Invert Invert = Invert Invert Invert Invert Invert

ST1 STO FLGB FLGA CTLA CTLB CTLO CTLA
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value = 1

Interface Registers 293

Status/Control Register 4 - Data Normalization and Handshake Control

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit®
0= Ready
Invert Invert Invert Invert
Handshake to Busy Not Port D Port C Port B Port A
Method 1 = Busy Used Data Data Data Dat
to Ready ata
Value = 128| Value = 64 | Value = 32 | Value = 16 VaIué =8 | Value=4 | Value=2 | Value =1

Decimal Value
of Bit5 Handshake Method
thru Bit 7
0] Output: Full Handshake
64 Output: Partial Handshake
128 Output: Strobe Handshake
0 Input: Full Handshake; READY to BUSY
32 Input: Full Handshake; BUSY to READY
64 Input: Partial Handshake; READY to BUSY
96 Input: Partial Handshake; BUSY to READY
128 Input: Strobe Handshake; READY to BUSY
160 Input: Strobe Handshake; BUSY to READY
192 Input or Output: No Handshake

Status/Control Register 5 - Primary Address and Trigger Action

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Trigger Trigger Trigger If Trigger,
If Data If Data If Data Pulse Primary Address
<R7 =R7 >R7 CTL

Value = 128| Value =64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1

Status/Control Register 6 - CTL Delay and Strobe Pulse Width

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Increment
0=10us Delay: Number of Increments
1=1ms
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

294 Interface Registers

Status/Control Register 7 - Trigger Character

Status/Control Register 8 - Output Enable for Port A and Port B
Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable
Not Used Port B Port A

Outputs Outputs

Value = 128/ Value = 64 | Value = 32 | Value = 16 | Value =8 | Value = 4 Value =2 | Value =1

Status/Control Register 9 - Output Inhibit Function
Most Significant Bit

Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable
Not Used Output
Inhibit
Value = 128 Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value =2 | Value = 1

Control Reglster 16 - EOL Control

Most Significant Bit Least Significant Bit ‘
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit @

Number of Characters
Not Used in EOL Sequence

Value = 128| Value = 64 | Value =32 | Value =16 | Value=8 | Value=4 | Value=2 | Value = 1

Control Register 17 thru Control Register 23 - EOL Characters ‘

(7

AFRICA, ASIA,
AUSTRALIA

ANGOLA

Telectra

Empresa Técnica de Equipamentos
Eléctricos, SARL.

R. Barbosa Rodrigues, 41-1°DT.°

Caixa Postal, 6487

Luanda

Tet: 36515/6

Cable; TELECTRA Luanda

AUSTRALIA
Hewlett-Packard Australia Pty. Ltd,
31-41 Joseph Street
Blackburn, Victoria 3130
P.0. Box 36

Doncaster East,
Victoria 3109

Tel: 896351

Telex: 31-024

Cable: HEWPARD Melbourne

Hewlett-Packard Australia Pty. Ltd.
31 Bridge Street

Pymble

New South Wales, 2073

Tel: 4496566

Telex: 21561

Cable: HEWPARD Sydney

Hewlett-Packard Australia Pty. Ltd,
153 Greenhill Road
Parkside, S.A, 5063

Tel: 2726911

Telex: 82536

Cable: HEWPARD Adelaide

Hewlett-Packard Australia Pty. Ltd.
141 Stirling Highway
Nedlands, W.A 6009

Tel: 3865455

Telex: 93859

Cable: HEWPARD Perth

Hewlett-Packard Australia Pty. Ltd.
121 Wollongong Strest
Fyshwick, AC.T. 2609

Tel: 804244

Telex; 62650

Cable: HEWPARD Canberra

Hewlett Packard Australia Pty. Ltd.
5th Floor

Teachers Union Building

495-499 Boundary Street
Spring Hill, Queensland
4000

Tel: 2291544
Cable: HEWPARD Brisbane

BANGLADESH
The General Electric Co. of
Bangladesh Ltd.

Magnet House 72

Dilkusha Commercial Area
Motijhell, Dacca 2
Tel: 252415, 252419
Telex: 734

Cable: GECDAC Dacca

ETHIOPIA
Abdella Abdulmaiik
P.0. Box 2635
Addis Ababa
Tel: 1193 40

GUAM

Guam Medical Supply, Inc.
Suite G, Airport Plaza
P.0. Box 8947
Tamuning 96911
Tel: 646-4513

Cable: EARMED Guam

HONG KONG
Hewlett-Packard Hong Kong Lid.
Room 105, Austin Centre

18t Floor

21 Austin Avenue

TST P.0. Box 98524
Kowloon

Tel: 3-697446 (5 lines)

Telex: 36678 HX

Cable: HEWPACK Hong Kong

Medical/Analytical Only
Schmidt & Co. (Hong Kong) Ltd.
Wing On Centre, 28th Floor
Connaught Road, C.
Hong Kong

Tel: 5-455644

Telex: 74766 SCHMX HX
INDIA

Blue Star Lid.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

Bombay 400 025

Tel: 45 78 87

Telex: 011-4093

Cable: FROSTBLUE

Blue Star Ltd.

Band Box House
Prabhadevi
Bombay 400 025
Tel: 457301

Telex: 011-3751
Cable: BLUESTAR

Blue Star Ltd.

Bhavdeep

Stadium Road
Ahmedabad 380014
Tel: 43922

Telex: 012-234

Cable: BLUEFROST

Blue Star Ltd.

7 Hare Street
Calcutta 700 001
Tel: 23-0131

Telex: 021-7655
Cable: BLUESTAR

Blue Star Ltd.

Bhandari House

91 Nehru Place

New Delhi 110024
Tel. 682547

Telex: 031-2463

Cable; BLUESTAR

Blue Star Ltd.

T.C. 7603 Poornima’
Maruthankuzhi
Trivandrum 695013
Tel: 65799

Telex; 0884-259

Cable: BLUESTAR

Blue Star Ltd.

11 Magarath Road
Bangalore 560 025
Tel: 55668

Telex; 0845-430

Cable: BLUESTAR

Blue Star Ltd.

Meeakshi Mandiram
XXXXV/1379-2 Mahatma

- Gandhi Rd.

Cochin 682016

Tel: 32069

Telex: 085-514

Cable: BLUESTAR

Blue Star Ltd.

1-1-117/1 Sarojini Devi Road
Secunderabad 500033
Tel: 70126

Telex: 0155-459

Cable: BLUESTAR

HEWLETT
PACKARD

Blue Star Ltd.

133 Kodambakkam High Road
Madras 600 034
Tet 82057

Telex: 041-379

Cable; BLUESTAR
INDONESIA
BERCA Indonesia P.T.
P.0. Box 496/ Jkt.

Jin. Abdul Muis 62
Jakarta

Tel: 349255, 349886
Tolex: 46748 BERSIL 1A
Cable: BERSAL

BERCA Indonesia P.T,
P.0. Box 174/Sby.
23 Jin. Jimerto
Surabaya

Tel: 42027

Cable: BERCACON

JAPAN
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168
Tel: 03-331-6111

Telex: 232-2024 YHP-Tokyo
Cable: YHPMARKET TOK 23 724

Yokogawa-Hewlett-Packard Ltd,
Chuo Bldg., 4th Floor

4-20, Nishinakajima 5-chome
Yodogawa-ku, Osaka-shi
Osaka, 532

Tel: 06-304-6021

Telex: 523-3624

Yokogawa-Hewlett-Packard Ltd.
Sunitomo Seimei Nagaya Bidg.
11-2 Shimosasajima-cho,
Nakamura-ku, Nagoya, 450
Tel: 052 5715171
Yokogawa-Hewlett-Packard Ltd.
Tanigawa Building

2-24-1 Tsuruya-cho

- Kanagawa-ku

Yokohama, 221
Tel: 045-312-1252
Telex: 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Building

108, 1-chome, San-no-maru
Mito, ibaragi 310

Tel: 0292-25-7470

Yokogawa-Hewlett-Packard Ltd,
Inoue Building

1348-3, Asahi-cho, 1-chome
Atsugi, Kanagawa 243

Tel: 0462-24-0452
Yokogawa-Hewlett-Packard Ltd,
Kumagaya Asahi

Hachijuni Building

4th Floor

3-4, Tsukuba

Kumagaya, Saitama 360
Tel: 0485-24-6563

KENYA

ADCOM Ltd., Inc.

P.0. Box 30070

Nairobi

Tel: 331955

Telex: 22639

Medical Only

International Aeradio (E.A.) Ltd.
P.0. Box 19012

Nairobi Airport

Nairobi

Tel; 336055/56

Telex; 22201722301

Cable: INTAERIO Nairobi

Medical Only

International Aeradio (E.A.) Ltd.
P.0. Box 95221
Mombasa

KOREA

Samsung Electronics Co., Ltd,
22nd Floor Dongbang Bldg.,
250, 2-KA, Taepyung-Ro
Chung-Ku,

Seoul

Tel: 777-4866

Telex: SAMSAN 27364
MALAYSIA
Hewlett-Packard Sales
(Malaysia) Sdn. Bhd.
Suite 2.21/2.22
Bangunan Angkasa Raya
Jalan Ampang

Kuala Lumpur
Tel: 483680, 485653
Protel Engineering

P.0. Box 1917

Lot 259, Satok Road
Kuching, Sarawak
Tel; 53544

Cable: PROTELENG

MOZAMBIQUE
AN. Goncalves, Ltd.

162, 1° Apt. 14 Av. D. Luis
Caixa Postal 107
Maputo

Tel: 27081, 27114

Telex: 6-208 NEGON Mo
Cable: NEGON

NEW GUINEA
Hewlett-Packard Australia Pty. Lid.
Development Bank Building
Ground Floor

Ward Strip

Port Moresby, Papua
Tel: 258933

NEW ZEALAND
Hewlett-Packard (N.2,) Ltd.
412 Cruickshank Street
Kilbirnie, Wellington 3

P.0. Box 9443

Courtney Place
Wellington

Tel: 877-199

Cable: HEWPACK Wellington

Hewlett-Packard (N.2.) Ltd.
P.0. Box 26-189

169 Manukau Road

Epsom, Auckland
Tel: 687-159

Cable: HEWRACK Auckland

Analytical/Medical Only

Northrop Instruments &
Systems Ltd.,

Sturdee House

85-87 Ghuznee Street

P.0. Box 2406

Wellington

Tel: 850-091

Telex: NZ 31291

Northrup Instruments &

Systems Ltd.
Eden House, 44 Khyber Pass Rd.
P.0. Box 9682, Newmarket
Auckland 1
Tel; 794-091

Northrup Instruments &

Systems Ltd,
Terrace House, 4 Oxford Terrace
P.0. Box 8388
Christchurch
Tel. 64-165

295

SALES OFFICES

NIGERIA

The Electronics
Instrumentations Ld,

N6B/770 Oyo Road

Oluseun House

P.MB. 5402

Ibadan

Tel: 461577

Telex: 31231 TEIL NG

Cable: THETIEL Ibadan

The Electronics
Instrumentations Ltd.

144 Agege Motor Road, Mushin

P.0. Box 481

Mushin, Lagos

Cable: THETEIL Lagos

PAKISTAN

Mushko & Company Ltd.

Oosman Chambers

Abdullah Haroon Road

Karachi-3

Tel: 511027, 512927

Telex: 2894

Cable: COOPERATOR Karachi

Mushko & Company, Ltd.
10, Bazar Rd.

Sector G-6/4
Islamabad

Tel: 28264

Cable: FEMUS Rawalpindi

PHILIPPINES

The Online Advanced Systems
Corporation

Rico House

Amorsolo cor. Herrera Str.
Legaspi Village, Makati

P.0. Box 1510

Metro Manila

Tel 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE
RHODESIA

Field Technical Sales

45 Kelvin Road North

P.0. Box 3458
Salisbury

Tel: 705231 (5 lines)

Telex: RH 4122

SINGAPORE

Hewlett-Packard Singapore
(Pte.) Lid.

1150 Depot Road

P.0. Box 58

Alexandra Post Office

Singapore 3

Tel: 270-2355

Telex: HPSG RS 21486

Cable: HEWPACK, Singapore

SOUTH AFRICA

Hewlett-Packard South Africa
(Pty.), Ltd.

Private Bag Wendywood,

Sandton, Transvaal, 2144

Hewlett-Packard Centre

Daphne Street, Wendywood,

Sandton, 2144

Tel: 802-5111/25

Telex: 8-4782

Cable: HEWPACK Johannesburg

Hewlett-Packard South Africa
(Pty.), Ltd.

P.0. Box 120

Howard Place,

Cape Province, 7450

Pine Park Centre, Forest Drive,

Pinelands,

Cape Province, 7405

Tel: 53-7955 thru 9

Telex: 57-0006

SRI LANKA
Metropolitan Agencies Lid.
209/9 Union Place
Colombo 2

Tel: 35947

Telex: 1377METROLTD CE
Cable: METROLTD

SUDAN
Radison Trade
P.0. Box 921
Khartoum
Tel: 44048
Telex: 375

TAIWAN
Hewlett-Packard Far East Ltd.
Taiwan Branch

Bank Tower, 5th Floor

205 Tun Hau North Road
Taipei

Tel: (02) 751-0404 {15 lines)
Cable: HEWPACK TAIPE
Hewlett-Packard Far East Ltd.
Taiwan Branch

68-2, Chung Cheng 3rd. Road
Kaohsiung

Tel: (07) 242318-Kaohsiung
Analytical Only

San Kwang Instruments Co., Ltd.
20 Yung Sui Road

Taipel

Tel: 3615446-9 (4 lines)
Telex: 22894 SANKWANG
Cable: SANKWANG Taipei

TANZANIA

Medical Only

International Aeradio (E.A.), Ltd.
P.0. Box 861

Dar es Salaam

Tel: 21251 Ext. 265

Telex: 41030

THAILAND

UNIMESA Co. Ltd.

Elcom Research Building

2538 Sukumvit Ave.
Bangchak, Bangkok
Tel: 3932387, 3330338

Cable: UNIMESA Bangkok

ZAMBIA

R.J. Tilbury (Zambia) Ltd.
P.0. Box 2792
Lusaka

Tel: 73793

Cable: ARJAYTEE, Lusaka

OTHER AREAS NOT
LISTED,

CONTACT:
Hewlett-Packard Intercontinental
3495 Deer Creek Road

Palo Alto, California 94304
Tel: (415) 866-1501

TWX: 910-373-1267

Cable: HEWPACK Palo Aito

Telex: 034-8300, 034-8493

9/79

SALES OFF|CES (cont.)

CANADA

ALBERTA
Hewlett-Packard (Canada) Ltd.
11620A - 168th Street
Edmonton T5M 319
Tel: (403) 452-3670

TWX: 610-831-2431
Hewltt-Packard (Canada) Lid.
210, 7220 Figher St. S.E.
Calgary T2H 2H8

Tel: (403) 253-2713

TWX: 610-821-6141

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
Richmond V6X 2w7

Tel: (604) 270-2277

TWX: 610-925-5069

MANITOBA
Hewlett-Packard (Canada) Ltd.
380-550 Century St.

St. James,

Winnipeg R3H OY 1

Tel: (204) 786-6701

TWX: 610-671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
P.0. Box 931

800 Windmill Road
Dartmouth B3B 1L1
Tel: (902) 469-7820

TWX: 610-271-4482

ONTARIO
Hewlett-Packard (Canada) Ltd.
1020 Morrigon Dr.

Ottawa K2H 8K7

Tel: (613) 820-6483

TWX: 610-563-1636
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
Mississauga L4V 1M8
Tel: (416) 678-9430

TWX: 810-492-4248

Hewlett-Packard (Canada) Ltd.
652 Newbold Street
London N6E 255

Tel: (519) 686-0181

TWX: 610-352-1201

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Blvd.

Pointe Claire HR 1G7
Tel: (514) 697-4232

TWX: 610-422-3022

FOR CANADIAN
AREAS NOT
LISTED:

Contact Hewlett-Packard {Canada)
Ltd. in Mississauga.

CENTRAL,
SOUTH AMERICA

ARGENTINA
Hewlett-Packard Argentina S.A,
Santa Fe 2035, Martinez

6140 Buenos Aires
Tel: 792-1239, 798-6086
Telex: 122443 AR CIGY

Cable: HEWPACKARG

Biotron S.AC.lLy M.

Avda. Paseo Colon 221

9 piso

1399 Buenos Aires
Tel: 30-4846/1851/8384
34-9356/0460/4551

Telex: (33) 17595 BIO AR
Cable: BIOTRON Argentina

BRAZIL

Hewlett-Packard do Brasil
l.e.C. Ltda.

Alameda Rio Negro, 750

Alphaville

06400 Barueri SP

Tel: 429-3222

Cable: HEWPACK Sao Paulo

Hewlett-Packard do Brasil
1.6.C. Lida.

Rua Padre Chagas, 32

90000-Porto Alegre-RS

Tel: 22-2998, 22-5621

Cable: HEWPACK Pérto Alegre

Hewlett-Packard do Brasil

1.e.C. Ltda.
Av. Epitacio Pessoa, 4664
22471-Rio de Janeiro-R)
Tel: 286-0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro

CHILE

Jorge Calcagni y Cia. Ltda.
Arturo Burhle 065

Casilla 16475

Correo 9, Santiago
Tel: 220222

Telex: JCALCAGNI

COLOMBIA
Instrumentacion

Henrik A. Langebaek & Kier S.A.
Carrera 7 No. 48-75
Apartado Aéreo 6287
Bogoté4, 1DE.

Tel: 269-8877

Telex: 44400

Cable: AARIS Bogoté
Instrumentacion

H.A. Langebaek & Kier S.A.
Carrera 63 No. 49-A-3t
Apartado 54098
Medoellin

Tel: 304475

COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle §

San Pedro de Montes de Oca
Apartado 10159

San José

Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
Cable: GALGUR

ECUADOR
CYEDE Cia. Ltda.

P.0. Box 6423 CCI

Av. Eloy Alfaro 1749
Quito

Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
Cable; CYEDE-Quito
Medical Only
Hospitalar S.A.

Casilla 3590

Robies 625

Quito

Tel: 545-250

Cable: HOSPITALAR-Quito

EL SALVADOR
IPESA

Bulevar de ios Heroes 11-48
Edificio Sarah 1148

San Salvador

Tel 252787

GUATEMALA

IPESA

Avenida Reforma 3-48

Zona 9

Guatemala City

Tel: 316627, 314786, 66471-5,
ext.9

Telex: 4192 Teletro Gu

MEXICO

Hewlett-Packard Mexicana,
SA deCV.

Av. Periférico Sur No. 8501

Tepepan, Xochimilco

Mexico 23, DF.

Tel: 905-876-4600

Telex: 017-74-507

Hewlett-Packard Mexicana,
SA deCV.

Ave. Constitucion No. 2184

Monterrey, NL.

Tel: 48-71-32, 48-71-84

Telex: 038-410

PANAMA

Electronico Balboa, S.A.

Aparatado 4929

Panama 5

Calle Samuel Lewis

Edificio “Alfa,” No. 2

Ciudad de Panama

Tel 64-2700

Telex: 3483103 Curundu,

Canal Zone

Cable: ELECTRON Panama

PERU

Compaiia Electro Médica S.A.
Los Flamencos 145

San Isidro Casilla 1030
Lima 1

Tel: 41-4325

Telex: Pub. Booth 25424 SISIDRO
Cabie: ELMED Lima
SURINAM

Surtel Radio Holland N.V.
Grote Hofstr, 3-5

P.0. Box 155
Paramaribo

Tel: 72118, 77880

Cable: Surtel

TRINIDAD &
TOBAGO

CARTEL

Caribbean Telecoms Ltd.
P.0. Box 732

69 Frederick Street
Port-of-Spain
Tel 62-53068
URUGUAY

Pablo Ferrando S.A.C.el.
Avenida ltalia 2877
Casilla de Correo 370
Montevideo

Tel: 40-3102

Telex: 702 Public Booth
Para Pablo Ferrando
Cable: RADIUM Montevideo

VENEZUELA

Hewlett-Packard de Venezuela C.A,

P.0. Box 50933

Caracas 105

Los Ruices Norte

3a Transversal

Edificio Segre
Caracas 107

Tet: 239-4133 (20 lines)
Telex: 25146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT
LISTED,

CONTACT:
Hewlett-Packard i.tercontinental
3495 Deer Creek Road

Palo Alto, California 94304
Tel: {415) 856-1501

TWX: 910-373-1260

Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

EUROPE,
NORTH AFRICA,
MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges.m.b.K.
Wehlistrasse 29

P.0.Box7

A-1205 Vienna

Tel: 35-16-21-0

Cable: HEWPACK Vienna
Telex: 13582/ 135066

Hewlett-Packard Ges.m.b H.

Wehlistrasse, 29

A-1205 Wien

Tel: 35-16-21

Telex: 135066

BAHRAIN

Medicai Only

Wael Pharmacy

P.0. Box 648

Bahrain

Tel: 54886, 56123

Telex: 8550 WAEL GJ

Cable: WAELPHARM

Al Hamidiya Trading and
Contracting

P.0. Box 20074

Manama

Tel 259978, 259958

Telex: 8895 KALDIA GJ

BELGIUM

Hewiett-Packard Benelux S.A./N.V.
Avenue du Col-Vert, 1,
{Groenkraaglaan)

B-1170 Brusseis

Tel: (02) 660 50 50

Cable: PALOBEN Brussels

Telex: 23-494 paloben bru

CYPRUS

Kypronics

19 Gregorios Xenopoutos Street
P.0. Box 1152

Nicosia

Tel: 45628129

Cable: Kypronics Pandehis
Telex: 3018
CZECHOSLOVAKIA
Hewlett-Packard

Obchodni zastupitelstvi v CSSR
Pisemny styk

Post. schranka 27

€S 11801 Praha 011
CSSR

Vyvojova a Provozni Zakladna
Vyzkumnych Ustavu:v Bechovicich
CSSR-25097 Bechovice u
Prahy

Tel: 8993 41

Telex: 12133

Institute of Medical Bionics
Vyskumny Ustav Lekarskej Bioniky
Jedlova 6

(5-88346 Bratislava-
Kramare

Tel: 44-551

Telex: 93229

296

DENMARK

Hewlett-Packard A/S

Datavej 52

DK-3480 Birkerod

Tel: (02) 8166 40

Cable; HEWPACK AS

Telex: 37409 hpas dk

Hewlett-Packard A/S

Navervej 1

DK-8600 Silkeborg

Tel: (06) 8271 66

Telex: 37409 hpas dk

Cable: HEWPACK AS

EGYPT

1EA.

International Engineering
Associates

24 Hussein Hegazi Street

Kagr-el-Aini

Cairo

Tel: 23829

Telex: 93830

Cable: INTENGASSO

SAMITRO

Sami Amin Trading Office

18 Abdel Aziz Gawish

Abdine-Cairo

Tel: 24932

Cable: SAMITRO CAIRO

FINLAND

Hewiett-Packard Oy
Revontulentie, 7
SF-02100 Espoo 10
Tel: (90) 455 0211
Cable: HEWPACKOY
Telex: 121563 hewpa sf

FRANCE
Hewlett-Packard France
Zone d'activites de Courtaboeuf
Avenue des Tropiques
Boite Postale 6

91401 Orsay-Cédex
Tel: (1) 90778 25

TWX: 600048F
Hewlett-Packard France
Chemin des Mouities
BP. 1682

69130 Ecully

Tel: {78) 338125

TWX: 310617F

Hewlett-Packard France
20, Chemin de La Cépiére
31081 Toulouse
Le Mirail-Cédex

Tel: (61)40 14 12
Hewlett-Packard France
Le Ligoures

Place Romée de Villeneuve
13100 Aix-en-Provence
Tel: (42) 59 4102

TWX: 410770F

Hewlett-Packard France
2, Allee de la Bourgonette
35100 Rennes

Tel: (99) 5142 44

TWX: T40912F

Hewlett-Packard France

18, rue du Canal de la Marne
67300 Schiltigheim
Tel: (88) 83 08 10

TWX: 890141F

Hewlett-Packard France
Immeuble péricentre

rue van Gogh

59650 Villeneuve D'Ascq
Tel: (20) 914125

TWX: 160124F

Hewlett-Packard France
Bétiment Ampére

Rue de la Commune de Paris
B.P. 300

93153 Le Blanc Mesnil-
Cédex

Tel: (01) 93188 50

Telex: 211032F
Hewlett-Packard France

Av. du Pdt. Kennedy

33700 Merignac

Tel: (56) 97 01 81
Hewlett-Packard France
Immeuble Lorraine
Boulevard de France

91035 Evry-Cédex

Tel: 077 96 60

Telex: 692315F
Hewlett-Packard France

23 Rue Lothaire

57000 Motz

Tel: (87) 65 53 50
GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560 140

D-8000 Frankfurt 56
Tel: (08011) 50041

Cable: HEWPACKSA Frankfurt
Telex: 04 13249 hpffm d
Hewlett-Packard GmbH
Technisches Biiro Bgblingen
Herrenberger Strasse 110
0-7030 Bdblingen,
Wiirttemberg

Tel: (07031) 6671

Cabie: HEWPACK Bbblingen
Telex: 07265739 bbn

Hewlett-Packard GmbH
Technisches Biiro Dijsseldort
Emanuel-Leutze-Str. 1 (Seestern)
D-4000 DUsseldorf

Tel: (0211) 5971:1

Telex: 085/86 533 hpdd d

Hewlett-Packard GmbH
Technisches Biiro Hamburg
Kapstadtring §

D-2000 Hamburg 60
Tel: (040) 63804-1

Cable: HEWPACKSA Hamburg
Telex: 2163 032 hphh d

Hewlett-Packard GmbH
Technisches Biiro Hannover
Am Grossmarkt 6

D-3000 Hannover 91
Tel: (0511) 46 60 01

Telex: 092 3259
Hewlett-Packard GmbH
Technisches Biiro Niirberg
Neumeyerstrasse 90
D-8500 Ntirnberg
Tel: (0911} 52 20 83

Telex: 0623 860

9/79

SALES 0FF|CES (cont.)

EUROPE,
NORTH AFRICA,
MIDDLE EAST

Hewlett-Packard GmbH
Technisches Bliro Miinchen
Eschenstrasse §

D-8021 Taufkirchen
Tet: (089) 6117-1

Telex: 0524985

Hewlett-Packard GmbH
Technigches Biiro Berlin
Kaithstrasse 2-4

0-1000 Berlin 30
Tel: (030) 24 90 86
Telox: 018 3405 hpbin d
GREECE

Kostas Karayannis

8 Omirou Street
Athens 133

Tel: 32 30 303/32/37 731
Telex: 21 59 62 RKAR GR
Cable: RAKAR ATHENS

ICELAND

Medical Only

Elding Trading Company Inc.
Hafnarvoli - Tryggvagdtu
P.0. Box 895
1S-Reykjavik

Tet: 15820/16303

Cable: ELDING Reykjavik

IRELAND
Hewlett-Packard Ltd.

King Street Lane
Winnersh, Wokingham
Berkshire, RG11 5AR
GB-England

Tel: (0734) 78 47 74

Telex: 847178

Cable: Hewpie London

Hewlett-Packard Ltd.
Kestrel House
Clanwilliam Place
Lower Mount Street
Dublin 2, Eire
Hewlett-Packard Ltd.
2C Avongberg Ind. Est.
Long Mile Road
Dublin 12

Tel: 514322/514224
Telex: 30439

Medical Only

Cardiac Services {Ireland) Ltd.

Kilmore Road
Artane

Dublin 5, Eire
Tel: (01) 316620

Medical Only

Cardiac Services Co.
95A Finaghy Rd. South
Belfast BT10 0BY
GB-Northern Ireland
Tel: (0232) 625566
Telex: 747626

ISRAEL

Electronics Engineering Div.
of Motorola lsrael Ltd.

16, Kremenetski Street

P.0. Box 25016

Tel-Aviv

Tel: 38973

Telex; 33569, 34164

Cable: BASTEL Tel-Aviv

ITALY

Hewlett-Packard taliana S.p.A.

Via G. Di Vittorio, 9

20063 Cernusco Sul
Naviglio (M)

Tel: {2) 903691

Tolex: 334632 HEWPACKIT

Hewlett-Packard Italiana S.p.A.

Via Turazza, 14

35100 Padova

Tel: (49) 664888

Telex: 430315 HEWPACK|

Hewlett-Packard taliana S.p.A.

Via G. Armellini 10
100143 Roma

Tol: (06) 54 69 61

Telex: 610514

Cable: HEWPACKIT Roma

Hewlett-Packard ltaliana S.p.A.

Corso Giovanni Lanza 94
110133 Torino

Tel: (011) 659308

Telex: 221079

Hewilett-Packard ltaliana S.p.A.

Via Principe Nicola 43 G/C
195126 Catania

Tel: (095) 37 05 04

Telex: 970291

Hewlett-Packard ltaliana S.p.A.

Via Nuova san Rocco A
Capadimonte, 624

80131 Napoli

Tek {081) 710698

Hewlett-Packard taliana S.p.A.

Via Martin Luther King, 38/ 111
1-40132 Bologna

Tel: (051) 402394

Telex: 511630

JORDAN
Mouasher Cousing Co.
P.0. Box 1387
Amman

Tel: 2490739907
Telex: SABCO JO 1456
Cable: MOUASHERCO

KUWAIT

Al-Khaldiya Trading & Contracting

P.0. Box 830-Safat
Kuwait

Tel: 42 4910/41 1726
Telex: 2481 Areeg kt
Cable: VISCOUNT

LUXEMBURG

Hewlett-Packard Beneluz S.A./N.V.

Avenue du Col-Vert, 1
(Groenkraaglaan)
8:1170 Brussels
Tel: (02) 660 5050
Cable: PALOBEN Brussels
Telex: 23 494
MOROCCO
Dolbeau

81 rue Karatchi
Casablanca
Tel: 3041 82

Telex: 23051/22822
Cable: MATERIO

Gerep

2, rue d'Agadir
Boite Postal 156
Casablanca
Tel: 272093/5
Telex: 23 739
Cable: GEREP-CASA

NETHERLANDS
Hewlett-Packard Benelux N.V.
Van Heuven Goedhartlaan 121
P.0. Box 667

1181KK Amstelveen
Tel: (20) 47 20 21

Cable: PALOBEN Amsterdam
Telex; 13216

NORWAY
Hewlett-Packard Norge A/S
Ostendalen 18

P.0.Box 34

1345 Osteraas

Tel: (02) 171180

Telex: 16621 hpnas n
Hewlett-Packard Norge A/S
Nygaardsgaten 114

P.0. Box 4210

5013 Nygaardsgaten,
Bergen

Tel: (05) 21 97 33
POLAND

Biuro Informacji Technicznej
Hewlett-Packard

Ul Stawki 2, 6P

PL00-950 Warszawa
Tel: 39 59 62, 39 51 87
Telex: 8124 53
PORTUGAL
Telectra-Empresa Técnica de

Equipamentos Eléctricos S.a.r.l.

Rua Rodrigo da Fonseca 103
P.0. Box 2531

P-Lisbon 1

Tet (19) 68 60 72

Cable: TELECTRA Lisbon
Telex; 12598

Medical Only
Mundinter

Intercambio Mundial de Comércio

Sarl

P.0. Box 2761

Avenida Antonio Augusto

de Aguiar 138

P-Lisbon

Tel: (19) 53 21 31/7

Telex: 16691 munter p
Cable: INTERCAMBIO Lisbon
QATAR

Nasser Trading & Contracting
P.0. Box 1563

Doha

Tel: 22170

Telex: 4439 NASSER

Cable; NASSER

ROMANIA

Hewlett-Packard Reprezentanta

Bd.n. Balcescu 16
Bucuresti

Tel: 1580 23/13 88 85
Telex: 10440

SAUDI ARABIA
Moder Electronic
Establishment (Head Office)

P.0. Box 1228, Baghdadiah Street

Jeddah

Tel: 27 798

Telex: 40035

Cable: ELECTA JEDDAH

Modem Electronic Establishment

(Branch)

P.0. Box 2728
Riyadh

Tel: 62596/66232
Telex: 202049

Modern Electronic Establishment

(Branch)

P.0. Box 193
Al-Khobar

Tel: 44678-44813

Telex: 670136

Cable: ELECTA AL-KHOBAR

SPAIN

Hewlett-Packard Espaiola, S.A.
Calle Jorez 3

E-Madrid 16

Tel: (1) 458 26 00 (10 lines)
Telex: 23515 hpe

Hewlett-Packard Espadola S.A.
Colonia Mirasierra

Edificio Juban

¢/0 Costa Brava, 13
Madrid 34

Hewlett-Packard Espaiola, S.A.
Milanesado 21-23
E-Barcelona 17

Tel: (3) 203 6200 (5 lines)
Telex: 52603 hpbe e

Hewlett-Packard Espafiola, S.A.
AvRamén y Cajal, 1

Edificio Sevilla, planta 9°
E-Sevilla s

Tel: 64 44 54/58

Hewlett-Packard Espaiola S.A.
Edificio Atbia It 7° B
E-Bilbao 1

Tel: 2383 06/23 82 06

Hewlett-Packard Espafiola S.A.
C/Ramon Gordillo 1

(Entlo.)

E-Valencia 10

Tel: 96-361.13.54/361.13.58

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvégen 3, Fack
$-161 Bromma 20
Tel: (08) 730 05 50

Telex: 10721

Cable: MEASUREMENTS
Stockholm

Hewlett-Packard Sverige AB
Frotalisgatan 30

$-42132 Véstra
Frolunda

Tel: (031) 49 09 50

Telex: 10721 via Bromma office
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Ziircherstrasse 20

P.0. Box 307

CH-8952 Schlieren-
Zilrich

Tel: (01) 7305240

Telex: 53933 hpag ch

Cable: HPAG CH

Hewlett-Packard (Schweiz) AG
Chéteau Bloc 19

CH-1219 Le Lignon-
Geneva

Tel: (022) 96 03 22

Telex: 27333 hpag ch

Cable; HEWPACKAG Geneva

SYRIA
General Electronic Inc.

Nuri Bagha-Ahnaf Ebn Kays Street

P.0. Box 5781
Damascus
Tel: 33 24 87
Telex; 11215 ITIKAL

Cable: ELECTROBOR DAMASCUS

297

Medical only

Sawah & Co.

Place Azmé

B.P. 2308

Damascus

Tel: 16 367-19 697-14 268
Telex: 11304 SATACO SY
Cable: SAWAH, DAMASCUS

Suleiman Hilal E! Miawi
P.0. Box 2528

Mamoun Bitar Street, 56-58
Damascus

Tel: 1146 63

Telex; 11270

Cable: HILAL DAMASCUS

TUNISIA

Tunisie Electronique

31 Avenue de la Liberte
Tunis

Tel: 280 144

Corema

11ter. Av. de Carthage
Tunis

Tet 253 821

Telex: 12319 CABAM TN

TURKEY

TEKNIM Company Ltd.
Riza Sah Pehlevi
Caddesi No. 7
Kavakliders, Ankara
Tel: 275800

Telex: 42155

Teknim Com., L.td.
Barbaros Bulvari 55/12
Besikyas, Istanbut
Tel: 613 546

Telex: 23540

EMA

Muhendislik Kollektif Sirketi
Mediha Eldem Sokak 41/6
Yiksel Caddesi
Ankara

Tel: 1756 22

Cable: EMATRADE/ Ankara

Yilmaz Ozyurek

Milli Mudafaa Cad 16/6
Kizilay

Ankara

Tel: 250309 - 17 80 26
Telex: 42576 OZEK TR
Cable: OZYUREK ANKARA

UNITED ARAB
EMIRATES

Emitac Ltd. (Head Office)
P.0. Box 1641
Sharjah

Tel: 354121/3

Telex: 8136

Emitac Ltd. (Branch Office)
P.0. Box 2711

Abu Dhabi

Tel, 331370/1

UNITED KINGDOM
Hewlett-Packard Ltd.

King Street Lane
Winnersh, Wokingham
Berkshire RG11 5AR
GB-England

Tel: (0734) 784774

Telex: 84 7178/9

Hewlett-Packard Lid.
Fourier House,

257-263 High Street
London Colney

St. Albans, Herts
GB-England

Tel: {0727) 24400
Telex: 1-8952716

Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
Altrincham
Cheshire WA14 INU
GB-England

Tel: (061) 928 5422
Telex: 668068

Hewlett-Packard Ltd.
Lygon Court

Hereward Rise

Dudley Road
Halesowen,
West Midlands, B62 85D
GB-England

Tel: (021) 501 1221
Telex: 339105

Hewlett-Packard Lid,
Wedge House

799, London Road
Thornton Heath
Surrey, CR4 6XL
GB-England

Tel: (01) 684-0103/8
Telex: 946825

Hewlett-Packard Ltd.
14 Wesley St
Castleford
Yorks WF10 1AE
Tel: (0977) 550016
TWX: 5557335

Hewlett-Packard Ltd.
Tradax House

§t. Mary's Walk
Maidenhead
Berkshire, SL6 1ST
GB-England
Hewlett-Packard Ltd.
Morley Road
Staplehill

Bristol, BS16 4QT
GB-England
Hewlett-Packard Ltd.
South Queensferry
West Lothian, EH30 9TG
GB-Scotland

Tel: (031) 331 1188
Telex: 72682

Hewlett-Packard Ltd.
Kestrel House
Clanwilliam Place
Lower Mount Street
Dublin 2, Eire
Hewlett-Packard Ltd.
2 Avonberg Ind. Est.
Long Mile Road
Dublin 12
Tel: §14322/514224
Telex: 30439
USSR
Hewlett-Packard
Representative Office
USSR
Pokrovsky Boulevard 4/17-kw 12
Moscow 101000
Tel: 294.20.24
Telex: 7825 hewpak su

YUGOSLAVIA

Iskra Commerce, n.sol.0.
Zastopstvo Hewiett-Packard
Obilicev Venac 26

YU 11000 Beograd
Tel: 636-955

Telex: 11530

Iskra Commerce, n.sol.o.
Zastopstvo Hewlett-Packard
Miklosiceva 38/ VIl
YU-61000 Ljubljana
Tel: 321-674, 315-879
Telex: 31583 9/79

SALES OFFICES (cont,)

EUROPE,
NORTH AFRICA,
MIDDLE EAST

SOCIALIST
COUNTRIES NOT
SHOWN, PLEASE
CONTACT:
Hewlett-Packard Ges.m.bH.
Handelskai 52

P.0.Box 7

A-1205 Vienna, Austria
Tel: (0222) 35 16 21 10 27
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

MEDITERRANEAN
AND MIDDLE EAST
COUNTRIES NOT
SHOWN, PLEASE
CONTACT:
Hewlett-Packard S.A,
Mediterranean and Middle East
Operations ‘

35, Kolokotroni Street

Platia Kefallariou
GR-Kifissia-Athens, Greece
Tel: 8080359/ 429

Telex: 21-6588

Cable: HEWPACKSA Athens

FOR OTHER AREAS
NOT LISTED,
CONTACT:
Hewlett-Packard S.A.

7, rue du Bois-du-Lan

P.0. Box .

CH-1217 Meyrin 2- Geneva
Switzerland

Tel: (022) 82 70 00

Cable: HEWPACKSA Geneva
Telex: 2 24 86

UNITED STATES

ALABAMA

P.0. Box 4207

8290 Whitesburg Dr,
Huntsville 35802
Tal: (205) 881-4592

8933 E. Roebuck Blvd.
Birmingham 35206
Tel: (205) 836-2203/2
ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel: (602) 244-1361

2424 East Aragon Rd.
Tucson 85706
Tel: (602) 889-4661

‘ARKANSAS

Medical Service Only

P.0. Box 5646

Brady Station

Little Rock 72215
Tel: (501) 376-1844
CALIFORNIA

1579 W, Shaw Ave.
Fresno 93771

Tel: (209) 224-0582

1430 East Orangethorpe Ave.
Fullerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2671

5400 West Rosecrans Bivd.
P.0. Box 92105

World Way Postal Center
Los Angeles 90009
Tel: (213) 776-7500

TWX: §10-325-8608
‘Los Angeles

Tel: (213) 7767500

3200 Hillview Av.

Palo Alto, CA 94304
Tel: (408} 988-7000

3003 Scott Boulevard

_~Santa Clara 95050

Tel: (408) 988-7000

TWX: 910-338-0518
‘Ridgecrest

Tel: (714) 446-6165

646 W. North Market Bivd.
Sacramento 95834
Tel: (916) 929-7222

9606 Aero Drive

P.0. Box 23333

‘San Diego 92123

Tel: (714) 279-3200
‘Tarzana

Tel: (213) 705-3344
COLORADO

5600 DTC Parkway
Englewood 80110
Tel: (303) 771-3455
CONNECTICUT
47 Barnes Industrial Road
Barnes Park South
Wallingford 06492

. Tel: (203) 266-7801

FLORIDA

P.0. Box 24210

2727 N.W. 62nd Street

Ft. Lauderdale 33308
Tel: (305) 973-2600

4080 Woodcock Drive #132
Brownett Building
Jacksonville 32207

Tel: (904) 398-0663

P.0. Box 13910
6177 Lake Ellenor Dr.
Orlando 32809
Tel: (305) 859-2900

P.0. Box 12826

Suite 5, Bldg. 1

Office Park North
Pensacola 32575
Tel: (904) 476-8422

Computer Systems Only
110 South Hoover Bivd.
Suite 120

Tampa 33609

Tel: (813} 872-0900
GEORGIA

P.0. Box 105005

450 Interstate North Parkway
Atlanta 30348
Tel: (404) 955-1500
TWX: 810-766-4830

Medical Service Only
‘Augusta 30903
Tel: (404) 736-0592
P.0. Box 2108

1172 N. Davis Drive
Warner Robins 31098
Tel: (912) 9220449
HAWAII

2875 So. King Street
Honolulu 96828
Tel: (808) 955-4455

ILLINOIS

5201 Tollview Dr.
Rolling Meadows
60008

Tel: (312) 255-9800

TWX: 910-687-2260
INDIANA

7301 North Shadeland Ave.

" Indianapolis 46250
* Tek: {317) 842-1000

TWX: 810-260-1797

IOWA

2415 Heinz Road

lowa City 52240
Tel: (319) 351-1020
KENTUCKY
10170 Linn Station Road
Suite 525
Louisville 40223
Tel: (502) 426-0100
LOUISIANA

P.0. Box 1449

3229-39 Williams Boulevard
Kenner 70063

Tel: (504) 443-6201
MARYLAND

7121 Standard Drive
Parkway Industrial Center
Hanover 21076
Tel: (301) 796-7700
TWX: 710-862-1943

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684
MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tet (617) 861-8960
TWX: 710-326-6904
MICHIGAN

23855 Research Drive
Farmington Hills 48024
Tel: (313) 476-6400

724 West Centre Ave.
Kalamazoo 49002
Tel: (616) 323-8362

MINNESOTA

2400 N. Prior Ave.

St. Paul 55113

Tel: (612) 636-0700

MISSISSIPPI
322 N. Mart Plaza
Jackson 39206
Tel: (601) 982-9363

MISSOURI

11131 Golorado Ave.
Kansas City 64137
Tel: (816) 763-8000

TWX: 910-771-2087

1024 Executive Parkway
St. Louis 63141
Tel: (314) 878-0200°
NEBRASKA
Medical Only

7101 Mercy Road
Suite 101

Omaha 68106
Tel: (402) 392-0948
NEVADA

‘Las Vegas
Tel: (702) 736-6610
NEW JERSEY
W. 120 Century Rd.
Paramus 07652
Tel: (201) 265-5000
TWX: 710-990-4951

Crystal Brook Professional Building
Route 35

Eatontown 07724
Tel: (201) 542-1384

NEW MEXICO

P.0. Box 11634

Station E

11300 Lomas Blvd., NE.
Albuquerque 87123
Tel: (505) 292-1330

TWX: 910-989-1185

156 Wyatt Drive)
Las Cruces 88001
Tel: (505) 526-2484

TWX: 910-9983-0850
NEW YORK

6 Automation Lane
Computer Park

Albany 12205

Tel: (518) 458-1550

TWX: 710-444-4961

650 Perinton Hill Office Park
Fairport 14450
Tel: (716) 223-9950
TWX: 510-253-0092

No. 1 Pennsylvania Plaza
55th Floor

34th Street & 8th Avenue
New York 10001
Tel: (212) 971-0800
5858 East Molloy Road
Syracuse 13211
Tel: (315) 455-2486

1 Crossways Park West
Woodbury 11797
Tel: (516) 921-0300
TWX: 510-221-2183

Tel: (513) 671-7400
NORTH CAROLINA
5605 Roanne Way
Greensboro 27405
Tel: (919) 852-1800
OHIO

Medical /Computer Only
Bldg. 300

1313 E. Kemper Rd.
Cincinnati 45426
16500 Sprague Road
Cleveland 44130
Tel: {216) 243-7300
TWX: 810-423-9430

330 Progress Rd.
Dayton 45449
Tel:{513) 859-8202

1044 Kingsmilt Parkway
Columbus 43229

Tel: (614) 436-1041
OKLAHOMA

P.0. Box 32008

6301 N. Meridan Avenue
Oklahoma City 73112
Tel-(405) 721-0200

9920 E. 42nd Street

Suité 121

Tulsa 74145

Tel: {918) 665-3300
OREGON

17890 S.W. Lower Boones Ferry
Road

Tualatin 97062

Tel: (503) 620-3350
PENNSYLVANIA
111 Zeta Drive
Pittsburgh 15238
Tel: (412) 782:0400

298

1021 8th Avenue

King of Prussia Industrial Park
King of Prussia 19406
Tel: (215) 265-7000

TWX: 510-660-2670

PUERTO RICO

" Hewlett-Packard Inter-Americas

Puerto Rico Branch Office
Calle 272,

Edit. 203 Urg. Country Club
Carolina 00924

Tel: (809) 762-7255

Telex: 345 0514

SOUTH CAROLINA
P.0. Box 6442

6941-0 N. Trenholm Road
Columbia 29260
Tel: (803) 782-6493
TENNESSEE

8914 Kingston Pike
Knoxville 37922

Tel: (615) 523-0522

3027 Vanguard Dr.
Director's Plaza
Memphis 38131

Tel: (901) 346-8370
‘Nashville

Medical Service Only

Tel: (615) 244-5448
TEXAS

4171 North Mesa

Suite G110

El Paso 79902

Tel: (915) 533-3555

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101

P.0. Box 42816

10535 Harwin Dr.
Houston 77036

Tel: (713) 776-6400
‘Lubbock

Medical Service Only

Tel: (806) 799-4472

205 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-8241
UTAH

2160 South 3270 West Street
Salt Lake City 84119
Tel: (801) 972-4711

VIRGINIA

P.0. Box 9669

2914 Hungry Springs Road
Richmond 23228
Tel: (804) 265-3431
Computer Systems/Medical Only
Airport Executive Center
Suite 111

5700 Thurston Avenue
Virginia Beach 23455
Tel: (804) 460-2471
WASHINGTON
Bellefield Office Pk,

1203 - 114th Ave. S.E.
Bellevue 98004

Tel: (206) 454-3971

TWX: 810-443-2446

P.0. Box 4010
Spokane 99202

Tel: (509) 535-0864
‘WEST VIRGINIA
Medical/ Analytical Only
4604 Mac Corkle Ave., S.E.
Charleston 25304
Tel: (304) 925-0492

WISCONSIN

150 South Sunny Siope Road
Brookfield 53005
Tet (414) 784-8800

FOR U.S. AREAS
NOT LISTED:

Contact the regional office
nearest you:

Atlanta, Georgia. . .North Holly-
wood, California. . .Rockville,
Maryland. . .Rolling Meadows,
[llinois. Their complete addresses
are listed above.

‘Service Only

9/79

A

Subject Index

ABORTIO statement,228
Acknowledge protocol, 140
Active Controller (CA),86,113,117
Active Listener (LA),86,113,117
Active Talker (TA),86,113,117
Active-in select code,58
Active-out select code,58
Address,6
Addressing:

BCD, 170

Defined,5

GPIO, 194

HP-IB,87,100,127
Advanced GPIO interfacing,209

B

Advanced HP-IB interfacing, 108
Advanced serial interfacing,140
AND function,42

AND operator,39

ASCIL,7,310

ASSERT statement,229

Async registers,146

Async troubleshooting hints, 161
Asynchronous data transmission, 133
Auto-answer routine, 144
Auto-disconnect (serial),152
Auto-originate routine, 144
Auto-response (GP10),220
Auto-RTS (serial), 159

Base conversion functions,45
Baud rate (serial), 148,153
BCD:
Coding,163
Formats, 164,184
1/O statements, 188
Interface,163
Interface errors,189
BINAND function,230
Binary:
AND function,42
Complement function,43
Conversions,46,47
ENTER,23
Exclusive OR function,43
Functions,41 ’
Images,18
Inclusive OR function,42
OUTPUT, 18
Representation,37

C

BINCMP function,231
BINEOR function,232
BINIOR function,233
Bit,36
BIT function,44,234
Bit test function,44
Blank lines, output, 19
Branch precedence table,71
Branching on bits,44
BREAK signal, 150,156,162
BTD function,47,235
Buffer:
Control,60
Defined,56,61
Empty (GP10),210
Status,58
Busy to ready (GP10),198
Byte,36
Byte output, 18

Cancelling conversions,29
Character images: :
Input,22
Output, 17
Character length (serial), 151
Choosing the Source or Destination,5
CLEAR statement,236
Clearing bits,39
Comma separator:
Input,21,22
Output, 15
Compact field,8
Compatibility, interface,4
Complement:
2's,36
Function,43
Operator,38
Complementing bytes,43
Control lines:
BCD interface,176
GPIO interface,212

HP-IB interface,122
CONTROL statement,60,81,82,237
Control, buffer,60
Conventions Used to Represent Syntax,227
Conversion:

Base 10 to base 16,46

Base 10 to base 2,46

Base 10 to base 8,46

Base 16 to base 10,47

Base 2 to base 10,47

Base 8 to base 10,47

Between alternate bases,48

Turning off,29

With TRANSFER, 56,61
CONVERT statement,28,238
Converting I/O Data,28
CRT IS statement,6
CTL line:

BCD interface,181

GPIO interface,195

299

300

Subject Index

D

Data communications equipment,132
Data formats (BCD), 164,184,186
Data rate:

BCD interface, 165

GPIO interface,210
Data terminal equipment,132
DC1/DC3 handshake, 140
DCE,132
Decimal point (BCD),180
Decimal point, output,15
Default formats (BCD), 164,166

Diagnosing errors,31
Digit characters:

Input,21

Output, 14
Digit selection (BCD),178
Drive capability (GPI0),193
DTBS$ function,46,240
DTE, 132 ‘
DTHS function,46,241
DTOS$ function,46,242
Dual channel formatting (BCD), 186

Delay, handshake (GPIO),204 \ Duplex:
Device Clear (SDC,DCL),89,107,108,112,117,125 Full, 142
Device selector,5,87 Half,143
E

EBCDIC output,30 EOL control:

Eliminating the line-feed requirement,24

Empty buffer,57,58
Empty pointer (buffer),57,58,60
ENABLE INTR statement,66,81,243
ENABLE KBD statement,75,244
End-of-line:
Branch,65,66
Sequence,82,115,116,159,211
Sequence images, 19
ENQ/ACK handshake, 140
ENTER USING statement, 20,245
ENTER:
Conversions,29
Free field, 10
Statement,9,20,245
Entering:
Line-feeds,26
Numeric data,9

GPIO interface,211
HP-IB interface,115
Serial interface,160
ERRN statement,31
ERROM statement,31,247
Error handling,31
Error messages:
BCD interface, 189
GPIO interface,223
HP-IB interface,130
Serial interface,162
ERRSC statement,31,248
European format:
Input,29
Output, 15
Exclusive OR function,43
Exclusive OR operator,40
Exponent digits (BCD),179

String data, 10 Exponents:
EOI input termination,27 Input,21
Output, 14
F
FHS transfers: Format of data (BCD), 164,184

BCD interface, 188

GPIO interface,210

HP-IB interface,110
Field and statement terminators,25
Field width,8
Fill pointer (buffer),57,58,60
Flag line: -

BCD interface, 181

GPIO interface,195

G

Formatted:
ENTER,20
I/O operations, 13
OUTPUT, 13
Framing error,156
Free field,8,10
Full buffer,57,58
Full duplex connection, 142
Function digits (BCD),168,179,182

Go-To-Local (GTL),90,125
GPIO:
I/O statements,222

H

Interface,191
Interface errors,223
Group Execute Trigger (GET),89,112,117,125

Half duplex connection, 143
HALT statement,249
Handshake:

" Control (GPI0),202
Defined,4
ENQ/ACK,140
GPIO interface,195
Lines (BCD), 164,176,177
Lines (GPIO),212

Modem, 141,152
XON/XOFF, 140

Hardware interrupt,65,66,81,98,104

Hex,37

Hex conversions, 46,47

HP-IB:
Control lines, 115,119,123
Control registers, 112,115
Control responses, 125
Error messages, 130
1/O statements, 108,128
Message definitions, 120
Registers,112,115,116,283

Se]lect code,5
Status registers,116
HTD function,47,250

I

Subject Index

Hung ENTER statements,24
Hung HP-IB bus, 106

1/O statements:
BCD interface,188
GPIO interface,222 -
HP-IB interface, 108
Serial interface,162
Ignoring input characters,23
Image §erflow, 16
IMAG
Images:
Advice,28
Biwnary input,23
Binary output,18
End-of-line sequence, 19
Numeric input,21
Numeric output, 14
String input,22
String output, 17
Terminator,26
Inclusive OR function,42
Inclusive OR operator,39
INDEX| conversion,29
Input handshakes (GP10),198
Input terminations (serial), 157,158

statement,251

Interface Clear (IFC),89,113,117,125
Interface:
BCD, 163
Compatibility,4
Functional diagram,3
GPIO, 191
HP-IB,85
Serial, 131
Internal printer,6
Interrupt:
Branching,65
Enable,66
Poiling (GPI10),218
Pulse width (GPI0),216
TRANSFER,51
Transfers (GP10),209
Transfers (HP-IB),110
Transfers (serial),143
Interrupts:
BCD interface, 173,177
GPIO interface,215
HP-IB interface, 102 . ‘
Serial interface,146 . ‘

Installing the /O ROM,2 Inverting bits,40

Integer|41 IOBUFFER statement,63,253

K

K format for OUTPUT, 14,17 Keyboard masking,75

L

Line-feed: LOCAL statement, 109,128,255
Entering,26 Logic polarity:

Ignoring input,24
Listen Address (LAG),100
Literal images, 17
Local Lockout (LLO),90,125
LOCAL LOCKOUT statement,92,109,129,256

M

BCD interface, 180
GPIO interface,205
Logical operators,38
Look-up table conversions,29 o

Mantiss%a digits (BCD), 178
Mark state (RS-232),133
Minus %ign, output,15

Use of,132,141
Multiple devices (BCD),168
Multiple interrupts:

Modem: BCD interface,174
Control, 148 GPIO interface,218
Signal lines, 141 My Listen Address (ML A),88,112,117
Status, 149 My Talk Address (MTA),88,112,117
N
Negative sign, output,15 NOT function,43
Negati\‘Le words,36 Number of ports (GP10),193
Non-controller,97,99 Numeric data input,9,21
Normallization: Numeric data output,8,14

BCD interface, 180
GPIO interface,205

o

Numeric OUTPUT images, 14

Octal,3

Octal canversions, 46,47

OFF EQT statement, 71,257

OFF INTR statement, 67,258

OFF TIMEOUT statement,69,259

ON EOT statement,66,70,71,260

ON INTR statement,66,71,261 .
ON TIMEOUT statement,68,71,106,262
Operating modes (BCD),164

OR function,42,43
OR operator,39
OTD function,47,263
QUTPUT USING statement,13,264
OUTPUT:
Conversions,29
Images, 14
Statement,8,13,264

301

302 Subject Index

Output:
BCD interface, 187
Blank lines, 19
Drive capability (GPIO),193

P

Handshakes (GPIO),196

Inhibit (GP10),205,207
Overflow of images, 16
Overlap,52,53

PAIRS conversion,29
Parallel Poll, 90,125
Parallel Poll Configure (PPC),99,125
Parity error:
GPIO interface,214,216
Serial interface, 154,156
Parity:
GPIO interface,214
Serial interface, 134,150
Part I: Beginner’s Guide, 1
Part II: Bits and Bytes and Such,33
Part ITI: Advanced I/O Operations,49
Part I'V: Interface Programming Techniques,83
Part V: Appendix,225
Partial fields (BCD),170
Partial handshake (GPIO),195
PASS CONTROL statement, 109,129,266
Peripheral device,1
Place value, bits,35,36

Q

Polarity, logical:

BCD interface,180

GPIO interface,205
Port 10 (BCD),171,177,183
Ports: i

16-bit (GPIO), 195

8-bit (GPIO), 194 :
PPOLL function, 109,129,267
Primary address:

BCD interface,170

Defined,6

GPIO interface,194

HP-IB interface,87,127
Printer interface (serial), 135,135
PRINTER IS statement,6,85
Printing to peripheral devices,6
Punctuation characters:

Input,21

Output,15

Quick reference,227

R

Radix point, output,15
Ready to busy (GP10),198
- Receiver control (serial),154
Reference:
HP-1B,108
Interface registers,283
Syntax,227
Registers:
BCD interface, 175,288
Buffer,58,60
GPIO interface,291
HP-IB interface,283
Serial interface, 146,285
Remote Enable (REN),90,92,108,125

S

REMOTE statement,92,109,129,188,268
Removing the-1/O ROM,3
Replication of images, 16
REQUEST statement,105,109,129,269
RESET statement,270)
Resetting the peripheral device (GPIO),213
RESUME statement,271
ROM:

Drawer,2

Installation,2

Removal,3

Socket,2
RS-232 troubleshooting hints, 161
RS-232-C interface,131

Sales and Service Offices,285
Secondary addressing,99,120,273
Secondary commands,99,120,273
SEND statement,99,100,110,129,272
Serial Pol1,90,103,125
Serial:
Data character,134,151
1/O statements, 162
Interface,131
Interface errors, 162
Interface registers,146
Troubleshooting hints, 161
Service Request (SRQ),66,67,90,102,105,112,117,125
SET TIMEOUT statement,68,275
Setting bits,39
Sign bit,36
Sign bit polarity (BCD),183
Sign character, output, 15
Skip to end of record,23
Skipping unwanted characters,23

Space state (RS-232),133
SPOLL function,103,110,129,276
Start bit, 134
States of an RS-232 line, 133
STATUS statement,58,79,80,277
Status:

Buffer,58

Lines (BCD),176

Lines (GPIO),212
Stop bits,134,150
String data:

Input,10

Output,8
String images, 17
String images, input,22
Strobe handshake (GPI0),195,204
Supressing carriage-return/line-feed, 19
Syntax Reference,227
System Controller (SC),86

Subject Index 3b3

T
Take Control (TCT),89,104,125 Fast-handshake,56,62
Talk Address (TAD),100) GPIO interface,209

Teletype interface (serial),139
Terminal interface (serial),138
Terminating with EOI,27
Terminator:
Field,25
Images,26
Statement,25
Testing bits,44
Timeout,68
Timing compatibility 4
Trailing blanks,8
Transfer rate:
CD interface,165
PIO interface,210
TRANSFER:
BCD interface, 188

U

HP-IB interface,101

Interrupt,51,62

Statement, (in),63,280

Statement, (out),61,278

Terminations,63,64,68,70
Transmitter control (serial),154
TRIGGER statement,94,110,129,282
Trigger:

Byte (GP10),219

HP-IB interface,89 v

Signal (GP10),220
Triggering transfers (GP10),219
Troubleshooting hints (serial), 161
Two’s complement,36

Unaddress, 86,89
Unformatted ENTER,9

w

Unformatted OUTPUT,8
Unlisten (UNL),86

Width of field,8
Word,36
[

X

Word output,18

XON/XOFF handshake, 140

304

Error Messages

|
EIJ‘I'OI'
Nlo.
|

Message

Meaning

Possible Corrective Action

)
181

i

AR

T00CHED

L0 PER

This is only a warning. It is issued when
a program is paused with an 1/O
TRANSFER still active. Do not attempt
to modify a program when a TRANS-
FER is active. '

An interface has failed self-test. This in-
dicates a probable hardware problem.

The 1/O operation attempted is not valid
with the type of interface being used.
Some examples are: specifying a status
or control register that does not exist,
using a primary address with an RS-232
interface, or using an I/O statement that
is not defined for the interface being
used.

The /O ROM has failed the checksum
self-test. This indicates a probable
hardware problem.

Before you modify or rerun the pro-
Qram, stop all active transfers with a
RESET, HALT, or ABORTIO instruc-
tion; or press the RESET key.

ERRSC can be used to determine
which interface has failed. Try re-
éyc]ing the power (turn computer off,
then: back on again). If the interface
gtill fails, contact the authorized
HP-85 dealer or the HP sales and
service office from which you pur-
chased your HP-85.

E:RRL can be used to identify the
improper statement. Check this
étatement in the Syntax Reference
section to determine if it is defined
for the interface being used. If the
statement is valid, check the ap-
propriate Interface Programming
section to get details on the proper
rhode or configuration required for
the statement used.

iTry recycling the power (turn the
icomputer off, then back on again). If
the error keeps recurring, contact
the authorized HP-85 dealer or the
HP sales and service office from
iwhich you purchased your HP-85.

306

306 Error Messages

Error
No. Message

Meaning

Possible Corrective Action

An interface-dependent error,
HP-IB: The statement used requires the
interface to be system controller.

Serial: UART receiver overrun; data has
been lost.

BCD: Attempting to put the interface
into an illegal mode.

GPIO: An odd number of bytes was
transferred when the interface was con-
figured for 16-bit words.

An interface-dependent error.
HP-IB: The statement used requires the
interface to be active controller.

Serial: Receiver buffer overrun; data
has been lost.

BCD: Port 10 not currently available.

GPIO: FHS TRANSFER aborted by
STO.

An interface-dependent error.

HP-IB: The statement used requires the
interface to be addressed to talk.

Serial: Automatic disconnect forced.

BCD: FHS TRANSFER aborted by
FLGB.

GPIO: Interface configuration does not
allow an output enable or output opera-
tion on Port A or Port B.

An interface-dependent error.
HP-IB: The statement used requires the
interface to be addressed to listen.

Serial: This error number not currently
used.

BCD: Data direction mismatch on cur-
rent operation.

GPIO: Cannot start operation because
handshake CTL line is not in proper
state.

ERRSC can be used to determine
the source of the error. Refer to the
appropriate Interface Programming
section to get details on the error
and possible corrective actions;

ERRSC can be used to determine
the source of the error. Refer to the
appropriate Interface Programming
section to get details on the error
and possible corrective actions.

ERRSC can be used to determine
the source of the error. Refer to the
appropriate Interface Programming
section to ‘get details on the error
and possible corrective actions.

ERRSC can be used to determine
the source of the error. Refer toi the
appropriate Interface Programring
section to get details on the grror
and possible corrective actions.

Error Messages 307

Error
INo. Message

Meaning

Possible Corrective Action \

An interface-dependent error.
HP-IB: The statement used requires the
interface to be non<controller.

Serial: This error number not currently
used.

BCD: Interface command has been di-
rected to a non-existent field.

GPIO: This error number not currently
used.

An interface-dependent error.
HP-IB: This error number not currently
used.

Serial: This error number not currently
used.

BCD: Cannot start operation because
CTL line is not in the proper state.

GPIO: This error number not currently
used.

An interface-dependent error.
HP-IB: This error number not currently
used.

Serial: This error number not currently
used.

BCD: Data format does not match the
mode of the interface.

GPIO: This error number not currently
used.

An interface-dependent error. This error
number not currently used.

An interface-dependent error. This error
number not currently used.

An interface-dependent error. This error
number not currently used.

Syntax error. A semicolon delimiter was
expected in the statement.

ERRSC can be used to determine
the source of the error. Refer to the
appropriate Interface Programminfg
section to get details on the err¢r
and possible corrective actions.

ERRSC can be used to determinie
the source of the error. Refer to th‘he
appropriate Interface Programminb
section to get details on the error
and bossible corrective actions.

ERRSC can be used to determimje
the source of the error. Refer to the
appropriate Interface Programmin
section to get details on the erroﬁ
and possible corrective actions. |

Put the semicolon where it belongs.

308 Error Messages

Error
No. Message

Possibie Corrective Action

g Iol

PR

Either the interface select code
specified is out of range, or there is no
interface present set to the specified
select code. Interface select codes must
be in the range of 3 thru 10. Select
codes 1 (CRT) and 2 (internal printer)
are allowed for OUTPUT statements
only.

The primary address specified is im-
proper. Only addresses 00 thru 31 are
allowed, but not all interfaces use this
entire range.

Four possible buffer problems: (1) The
string variable specified has not been
declared as an IOBUFFER. (2) Attempt-
ing to ENTER from a buffer which is out
of data. (3) Attempting to OUTPUT to a
buffer which is already full. (4) Attempt-
ing an output TRANSFER with an empty
buffer. '

An incoming character sequence does
not constitute a valid number, or a
number being output requires three ex-
ponent digits and an “e” format was
specified.

Be sure that the interface select
code is within the proper range. Pay
special attention to variables that
are used to hold interface select
codes. If the interface select code is
OK, be sure that the interface is
plugged in properly. Finally, check
the switch séttings on the interface.
(Someone might have changed
them last weekend.)

Be sure that the primary address! is
within the proper range. Pay special
attention to variables that are used
to hold addresses or device selec-
tors.

Be sure you have included the
necessary IOBUFFER statement.
Check the logical flow of your pfo-
gram (in what order are the state-
ments executed). Buffer contents
can be examined at any time by
simply printing or displaying the
string variable being used as the
butfer. If this doesn’t provide enough
information, the buffer pointers can
be examined with the STATUS
statement.

If the error is from an output opeta-
tion, check the magnitude of the
number and the format used. If the
error is from an input operation,
there are many possible causes.
Here are some things to look for:
more than 255 leading non-numeric
characters, unexpected spaces in a
character stream when a
character-count format is used,
punctuation sequences that include
potentially numeric characters used
in an order that is numerically mean-
ingless.

Error Messages 309

EI’I’OI’
No. Message Meaning ! Possible Corrective Action

T TEREM] A buffer was emptied before all the Check your incoming characte
ENTER fields were satisfied, or a field || stream, ENTER list, and image
terminator was encountered before the specifiers.
specified character count was reached.

=

2hVERE TYRE 4The type (string or numeric) of a vari- || Check your ENTER list and imag

e
able in an ENTER list does not match | specifiers, :
with the image specified for that vari-
able.

E MO TERM A required terminator was not received || Check your incoming charactdr
from an interface or buffer during an stream, ENTER list, and image

ENTER statement. Remember that specifiers.
there is a default requirement for a line-
feed statement terminator.

ASCIl Character Set

310

SNYOL INITVAIND3

L3S | £2L | 42 {2zt |triiiie (130
0e0s |9zt | 3z ezt [ounne |
6205 | szt | az |szb [Lomsbo |
8208 |vel | 0z | vib |ooietnio ||
2208 [€21 [8L [E€L1L [LiOLLLIO }
9208 (22t | v |z |otottte | 2
§20S | i2h | 62 | 1ZL [100kLL10 | A
¥20s (o021 | 8 | ozt |ooortiro | x
€208 | BLL | 2L | 291 [LLIOLLLO | m
2208 |8kt | 92 {99l [otorio | A
1208 | Lkk | Sz [s9L {totoLLlo | R
0208 | o1t | vz | v91 |oototrio | 3
6108 | SLL | € |e9t |1Lo0tiio | s
8108 | vLL | 2L [29t |O0LoOkLID | 4
2108 | g1t 73 191 | 1000LLL0 b
9108 |2tk | oz | o9t |ooootito | d
S1OS | Lk | 399 [ZSL | BLLIOIO | ©
¥1OS [Otk | 39 | 95t |ortiokto | u
€105 [601 | @9 | SSI | lOMIOKIO | w
2105 | 8ot | 09 | vst |oorsosio | 1
t10s | 0L | |9 | st | tiototi0 | ¥
010S | 90k | vo | g5t |otororro | f
60S | SOL | 69 | ISL | LOOLOLLO | !
808 | vor | @9 | ost | ooototio | u
208 [€01 | 49 | Z¥b {Lil00kkO | 6
908 {20t | 998 | 9vi | otroomio | 4
SOS | 1Ok | S9 | Spi | LOLOOKLO | @
¥OS | 00L | ¥9 | ¥pL | 00KOOLID | P
€08 | 66 | €9 | evt | tioootio [o
20s | e6 | 29 | z¥L | oloootio | q
108 | £6 | 19 | vt | tooooLio | e
008 | 96 | 09 | ov1 | 000OOLIO |
28Q | X0H | 120 Aewig |Byp
ai-dH nosvy

ANN | s6 | 45 | zeL friiniowo | T
ogvl | v6 | 35 | 9eer [otiro0 | v
6evl | €6 | Qs | sel [tottowe | |
szvl | 26 | 05 | ver |oortoto | \
2v1 | 16 | g |eer [1totoro |)
9zvL | 06 | ws |2e1 joiottoto | z
syl | 68 | 65 | telL {io0ttoL0 | A
veve | 88 | ss |oeL [ooortolo | x
€evl | 28 | £S5 | 2L [tui01000 | M
2evL | 98 | 95 |92t |OLLOLOLO | A
12vL | s | ss | szt fiosototo | N
ozvi | v8 | ¥ | v21L jootoiole | L
sivi | e8 | €5 | €21 |1001010 | §
8Vl | 28 | 25 |22 josto00t0 | W
zive | 18 | w5 | 121 |Loootoro | ©
otvL | o8 | os |o0zL |oooototo | d
SIvL | 62 | 3v |1k |LLwooto | O
vivl | 82 | 3v |9t |otkoo0 | N
evl | 22 | av st {ortooto | W
ZlVL | 92 | OF | kL |ockiooko | 1
vl | sz | ar | € |riotoote | N
o | v2 | wv |2k jotowooio | ¢
6vi | €2 | v | ti1 |to0L00i0 | ¢
8vlL | 22 | ey | Ok |000100i0 | H
vl | 12 | v | 2o |Lewo00t0 | ©
ovL | 02 | ov |90t [otioooto | 4
sv¥l | 69 | S¥ | soL {10L000L0 | 3
vl | 89 | ¥v | +0L |0OL0OOIO | @
evl | 29 | ev |sor |1io000t0 | o
2vi | 99 | 2¢ | 20t |oLoo00t0 | @
wwr | s9 | | 101 |100000t0 | W
ovL | 9 | ov | 0oL [ooocool0 | ®
290 | x8H | 100 Aeulg Yy
AdH T cwu o3 INTTVAIND3 nosv

NN g9 | de | zz0 |00 | ¢
oevl [29 | 3¢ |90 Jorrrkoo | <
62v1 [19 | @& | S0 [LOKLLIOO | =
82v1 [09 | 96 | 20 {o0Mibi00 | >
L2Vl | 65 | 8 | £20 |[110L1100 ¢
92v1 | 86 | vE |20 |ot0brso0 | o
sevl | ¢ | ¢ | t20 {1004100 | 6
vevi1 | 95 | 8€ | 00 |00Oitio0 | 8
€2v1 | ss | ze |90 |iiiosioo | 2
2ev1 | v§ | 9 | 990 |oitorloo] 9
12v1 | €5 | se | 590 |tororico | S
02vl [2 | e | veo |ootorloo | ¢
6lv1 | 15 | €€ | €90 |1100L100 | €
81Vl | 05 | 26 | 290 [0LOOLLOO | 2
2wt | b | te | 190 |1oootio0 | L
sty | e | oe | 090 Jooootico | o
Siv1 | 2v | d2 | 250 |Hiktoroo |/
vty | o | 32] eso jotttoloo | ¢
€yl | s¢ | @2 | 550 10410100 | —
2V | bv | D2 | $SO | 00LLOLOO ¢
LVl | ey | 82 | €50 | LLOLotoo | +
ol | 2v | ve | 250 |oto10t00 |«
6vl | v | 62 | 1so |toototoo | (
vl | or | sz | o0so |oooicioo [)
o1 | 6 | 22 | 260 |1irootoo |
ov1 | 8¢ | 92 | 9v0 |o1LooKOO | B
sVl | 26 | 52 | Sv0 | 1L0LOOLOO | %
vv1 | 9€ | ve | vv0 |ocotool00 | §
evl | s¢ | ez |evo |rioooto0 | #
evl | v¢ | 2@ |2v0 {ol000100 |
vl | ee | 12 | 1v0 | rooc0t00 | i
ov1 | 2€ | 02 | O¥0 { 00000100 |30eds
2eq jxeH | 190 Aseulg | eyd
8i-aH SWHO4 INITVAIND3 nosvy

1€ | 2t [zeo [ernnrooo | sn
oc | 31 |oco jorrtrooo | su
sz | ar |seo [tortiooo | s
8z | o1 |veo [oorrrooo | s4
z | |eco [tiorioo0 | o83
oz | v+ |zeo |orortooo | ans
ads | sz | 61 | eo [rooti000 | wa
3d4s | vz | 8t | o0eo |oocLiooo | Nvo
62 | 21 |20 |t1o1000 | 813
2z | 9t | s20 [orioto00 |onas
ndd | 1z | st | szo |iototooe | yvn
10a | oz | # | v20 |oorotoce | voa
61 | e |ez0 |1001000 | £0a
et | 21 | 220 [ooor000 | 2o
om |zt | vt | 1z0 |1ro0oro0o | 1oa
ot | o | ozo |ooootooe | 310
st | 40 | 210 [1iroooo | s
vt | 30 | 910 |ottroooo | os
st | ao [sto {roreoo00 | wo
21 | o6 | %o |ootroooo | 44
1t | a0 | ewo {tioroooo | 1
ot | vo |20 |otorosoo [a7
1oL | 6 |60 |10 [rooroo00 | 1H
139 | ¢ | 80 |ow {oooroo00 | s
¢ | 20 | 200 | 11100000 | T138
o | 90 | o00 |orro0000 | oV
odd | s | so | soo |roroooco | on3
oas | v | vo | voo |00L00000 | 103
¢ | e0 | eoo |tro00000 | x13
z | 20 | zoo |oroococo | xus
e | + | 10 | o0 | 10000000 | HOS
o [oo | ooo |oooooo0o0 | TN
22a | xsH | 190 | Asewg |eys
ardu SWHO4 INTTVAINDA nosv

(A ciciano

00085-90142 Rev. B (8/80) Printed in U.S.A.

